

Kingdom Of Cambodia Nation Religion King

Training Workshop on Disaster Resilient Cities: Advances in Meteorological Forecasting and Hazards Assessment

General status Environmental Geology & hydrogeology in Cambodia & A Case Study of River Bank Erosion in Vietnam

Cambodian participants:

Mr. KIM Seng, Geologist, Office Research Geology, Department of Geology

Department of Geology :

ត្រូះស្ទួខរ៉ែ និខទាទពេល Ministry of Mines and Energy

- Geological Survey and Geo-Environmental
- To Cooperation mineral sector and Research Geology: contribute towards enhancing economic growth and betterment of the quality of life through sustainable mineral development, Geological Survey.
- Involve Mineral Expolration and optimal use of mineral resources and ensure a fair, efficient, environmental friendly and social responsible mineral investment.

Promote the protection, and conservation and rehabilitation of environment and natural resources in mineral development activities.

Geological and **Mineral Deposit Mapping**.

Environmental Issue (Groundwater Contamination)

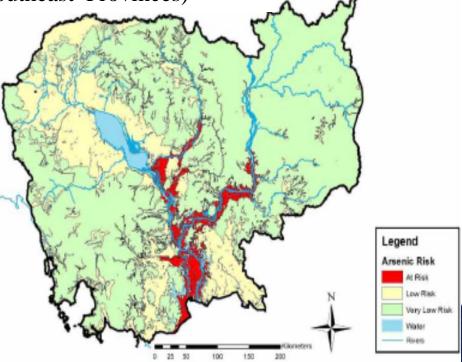


 Table 1 Status of the total number of regional groundwater wells developed from 1983 to 2001 (Ministry of Planning, 2003)

No.	Province	UNICEF/MRD	NGOs	Total
1	BanteyMeanchey	615	628	1 243
2	Battambang	750	1 193	1 943
3	Kandal	641	340	981
4	Kampot	2 869	244	3 113
5	Keb	32	80	112
6	Kampong Cham	1 127	1 213	2 340
7	Kampong Chhnang	832	954	1 786
8	Kampong Speu	269	992	1 261
9	Kampong Thom	137	778	915
10	Koh Kong	24	17	41
11	Kratie	522	168	690
12	Mondol Kiri	1	0	1
13	OurdorMeanchey	0	0	0
14	Pailin	33	4	37
15	Phnom Penh	1 014	0	1 014
16	PreahVihear	51	286	337
17	Prey Veng	1 418	4 622	6 040
18	Pursat	274	154	428
19	Ratanak Kiri	20	64	84
20	Siem Reap	405	284	689
21	Sihanouk Ville	77	20	97
22	Stung Treng	31	220	251
23	SvayRieng	506	5 599	6 105
24	Takeo	1 596	405	2 001
	Total	13 244	18 265	31 509

Saltwater intrusion (Southeast Provinces)

Banteay Meanchey Provience landslide_type Rockfall

Preah Vihear Provience landslide

Takeo Provience Rockfall

A 50-meter bank of the Tonle Sap River slid into the water, collapsed and sank

Land erosion in Kampong Cham province

A Case Study of River Bank Erosion in Vietnam

Original title of project/case study:

Prediction of River Bank Erosion in The Lower Mekong River Delta,

Authors: Le Manh Hung, Hitoshi Tnaka, Nguyen Trong Tu, and Nguyen Trung Viet.

Affiliation: Southern Institute of Water Resources Research, Vietnam, Tohoku University, Japan Email: manhhung@saigonnet.vn

- > The location of the research area: Vietnam, National project KC08-15
- > The justifications for conducting the research
- Measures which has been taken, including the data and software
- > Before the study: no empirical research, after: policy made to protect people and properties
- Results of the research: beneficial to the nation and people
- Limitations and recommendations: human activities, sand mining, and others should be factored into

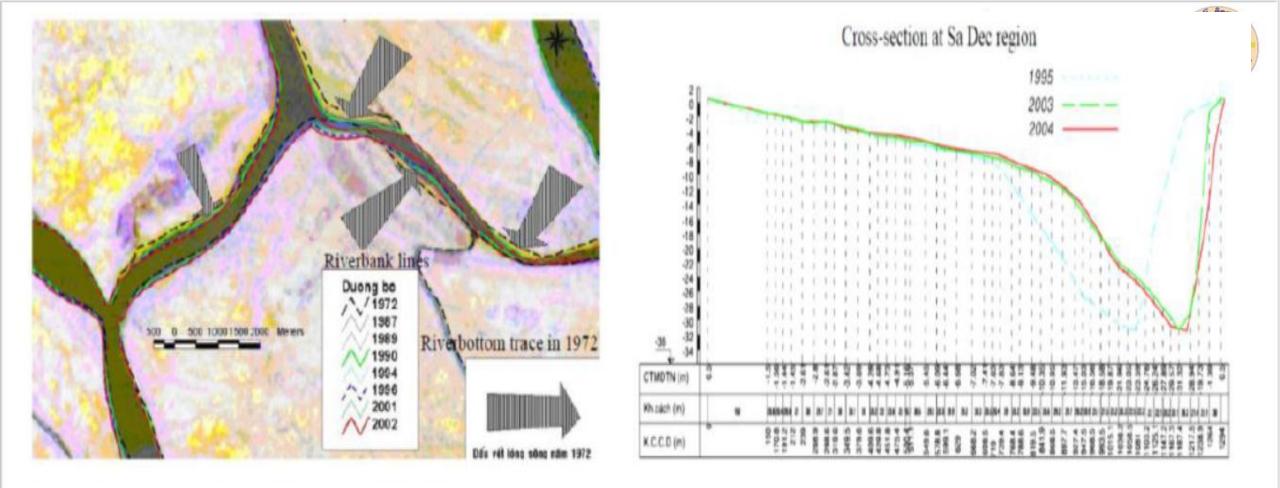
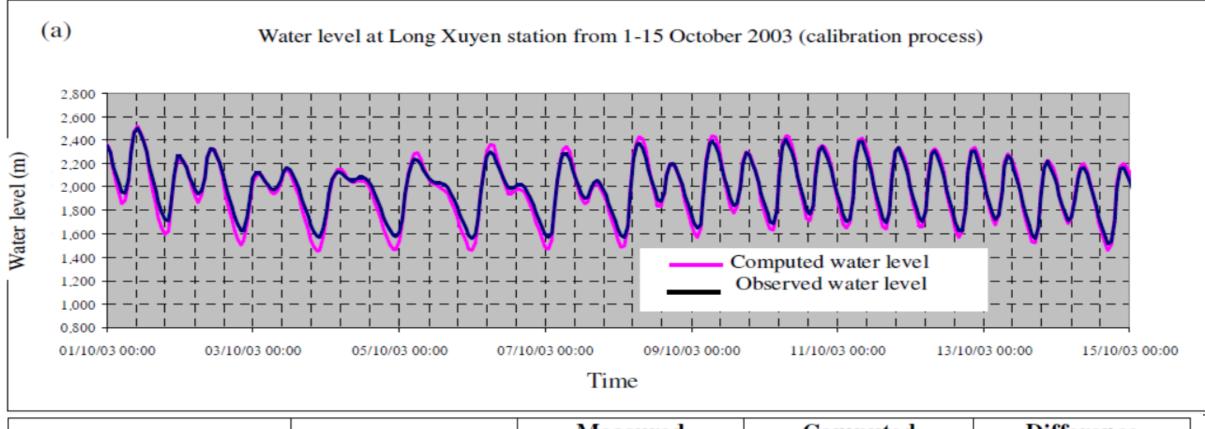


Figure1a. The satellite image about the evolution of the riverbank of the Van Mao river from 1972 to 2002. 1b. The cross section of Sa Dec river.


Table 1 Evolution trends of the bank erosion at some specific position in the Lower Mekong Delta						
River bank's name	Erosion position	Erosion length (km)	Maximum bank erosion width (m)	Mean erosion speed (m/year)	Movement speed of erosion center (m/year)	
Left bank of	Thuong Phuoc – Thuong Thoi Tien	6	1250	34,7	33,3	
Tien River	Hong Ngu	8	110	3,1	3,5	
	Cho Lach – Ben Tre	4,5	400	11,1	3,2	
Right bank of	My Luong – Long Dien	4	120	3,3	6,8	
Tien River	Chau Thanh – Sa Dec – My thuan	10	1200	33,3	38,1	
Vam Nao River	My Hoi Dong	6,5	350	9,7	23,3	
Right bank of	Khanh An – Khanh Binh	3	300	8,3	2,8	
Hau River	An Chau – Long Xuyen	2,6	100	2,8	3,1	
	Binh Thuy – Can Tho	2,8	300	8,3	2,2	

ត្រូះស្ទួខរ៉ែ និខថាទពល Ministry of Mines and Energy

$$B_{xi} = \alpha \left[(\Delta V_i . \Delta T_i)^n \left(\frac{H_{\max i} - H_0}{H_{\max} - H_0} \right) \right]^{\beta}$$

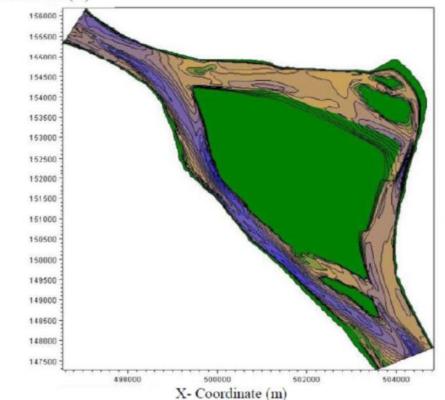
in which $\Delta V_i = V_i - [V]_{kd}$ indicates the flow capacity caused erodible riverbed, V_i - the mean flow velocity at the edge of the erosional bank, $[V]_{kd}$ - the inception movement velocity of the bed material, ΔT_i -the maintainable duration of the flow velocity, which is greater than inception movement velocity of the bed material at the section *i*, respectively; α , β , *n* - the experimental coefficients.

Measured time	Section name	Measured	Computed	Difference	
Wieasureu unie	Section name	discharge (m3/s)	discharge (m3/s)	(%)	
9:30 - 10 th Aug 2003	Sec. 1	9109	9799,89	6,91	
9:10 - 10 th Aug 2003	Sec. 2	2409	2170,71	2,38	
9:00 - 10 th Aug 2003	Sec. 3	738	914,18	1,76	
8:50 - 10 th Aug 2003	Sec. 4	5813	6385,56	5,73	
14:40 -10 th Aug 2003	Sec. 5	8207	8157,17	0,50	
15:00 -10 th Aug 2003	Sec. 6	1771	1627,52	1,43	
14:50 -10 th Aug 2003	Sec. 7	6641	6394,86	2,46	

I. Dong Thap Province						
No.	River's Name	Districts	Erosion position	Length of erosion bank (m)	Erosion distance in the bank (m)	
1			Left bank in Thuong Phuoc 1,2	4900	$20 \div 30$	
2			Head of Long Khanh island, Long Khanh A	2200	$15 \div 20$	
3			Head of Cai Vung island, left bank in Long	3600	10 ÷ 15	1
		Hong Neu	Thuan			
4		Hong Ngu	Right bank of Cai Vung island, Phu Thuan A	4000	5 ÷ 7	1
5			Left bank in Thuong Lac	2400	5 ÷ 8	1
6			Left bank in Hong Ngu town	1500	5 ÷ 8	1
7			Head of Tay island, Phu Thuan B	4000	$20 \div 30$	1
8	Tion	Tam Nong	Left bank in Phu Ninh	3500	5 ÷ 8	
9	Tien		Left bank of Tay island, Tan Quoi	4000	5 ÷ 8	
10		Thanh Binh	Left bank in Tan Thanh	2700	5÷6	
11			Left bank in Tan Binh	600	5 ÷ 6	
12		Cao Lanh	Left bank in commune No. 6	2000	5 ÷ 8	
13		Lap Vo	Left bank in My An Hung A, B	7000	5 ÷ 7	
14		Cao Lanh	Left bank in My Xuong	1500	8 ÷ 10	
15		Cao Lalin	Left bank in Binh Hang Tay, Binh Hang Trung	3700	8 ÷ 10	
16		Sa Dec	Right bank in commune 3,4	3600	5 ÷ 8	
17		Chau Thanh	Right bank An Hiep	6000	20	

Le Manh Hung, Hitoshi Tnaka, Nguyen Trong Tu, and Nguyen Trung Viet, 2006. Prediction of River Bank Erosion in The Lower Mekong River Delta.

Retrieved on April 18, 2018 from


http://www.geologypage.com/2014/05/mekong-river.html

ត្រុងសូខភើ និខថាមពល

Y- Coordinate (m)

Bed level (m)

75. -15

-25 - -22.5

7.5 - -25 -30 - -27.5

elow -30

Undefined Value

ទ្រុះស្ទួទតែ និទថាទពល Ministry of Mines and Energy

Thanks for your attention! หาศุกา!