

REAL TIME CONTROL OF URBAN FLOODING: A CASE STUDY OF DAMHUSAEN CATCHMENT COPENHAGEN DENMARK

Presented by: Zia UI Hassan

Water Resources Engineer/Hydrologist

THE CAMBRIDGE MALAYSIAN EDUCATION AND DEVELOPMENT TRUST (CMEDT) IN ASSOCIATION WITH THE MALAYSIAN COMMONWEALTH STUDIES CENTRE, CAMBRIDGE (MCSC)

The expert in **WATER ENVIRONMENTS**

18th September 2018

Contents

Introduction

- frequency and severity of floods due to climate change
- Forecasted increase in population 54 % to 70% by 2050 (WHO)
- Cost effective
- Improvement into receiving water quality

Main Objective

• To develop the real time control strategies for reducing overflow without increasing flood risk.

Scope of the study:

- Review of Literature
- Data Collection (Meteorological data, sewer pipes data, observed flow
- Data quality assurance and filling of missing data
- Development of Mike urban model (Rainfall-runoff, pipe flow)
- Calibration and validation of model
- Identification of weirs which are discharging into Damhusaen Lake
- Testing of control strategies in MIKE Urban control module to reduce overflow into Lake

Study Area – Damhusaen Catchment:

- Total Area = 37 km^2
- Designed capacity of the plant = 350,000 PE
- Maximum flow, inlet = $684,000 \text{ m}^3/\text{day}$
- Maximum capacity to treat Ammonia = 3200 kg/day
- Volume of water at inlet per year = 27.4 mill.m³
- Volume of water Bypass per year = 1.9 mill.m³
- Receiving water body = Øresund coast

Population statistics:

• Population 2015: 262,327

 Average annual rainfall = 613 mm

Source: HOFOR & BIOFOS

Collected Data

S.N.	Data type	Time period	Frequency	Department
1	Topographical map	-	-	DHI, Denmark
2	Meteorological Data (Precipitation)	Jan, 2010 To March,2017	01 minute	Danish Meteorological Department, SVK Rain gauges
3	Forecasted Rainfall Data	Feb, 2017 To onward	10 minutes	Danish Meteorological Department
4	Observed Flow Data	Jan, 2010 To Feb, 2017	2 minute	BIOFOS

Summary of collected data

To develop the real time control strategies for reducing overflow without increasing flood risk.

Calibration Strategy for flow at the inlet point of WWTP

- Selection of Dry weather days
- How we define Dry weather flow into model?
- Selection of rainfall events

Selection of sensitive parameter

Location of calibration

Results: Calibration of Dry weather flow

Observed Flow: Blue	
---------------------	--

• Simulated Flow: Green

Event Date	=06-05-2016
Observed volume	=66348.23 m ³
Simulated volume	=63881.28 m ³
Error in volume	=3.7 %

Event Date	=05-05-2016
Observed volume	=68121.93 m ³
Simulated volume	=63881.28 m ³
Error in volume	=6.2 %

Event Date	=21-07-2016
Observed volume	=59729.6 m ³
Simulated volume	=63881.28 m ³
Error in volume	=-6.9 %

Results: Calibration of Wet weather flow

- Observed Flow: Blue
- Simulated Flow: Black

Event Date	=20-02-2017
Error in volume	=2.8 %
Observed peak	=3.3 m ³ /sec
Simulated Peak	=3.5 m³/sec
Peak Error	=5.7%
Correlation coefficient	=0.781

Event Date=22-02-2017Error in volume=3.2 %Observed peak $=5.68 \text{ m}^3/\text{sec}$ Simulated Peak $=5.48 \text{ m}^3/\text{sec}$ Peak Error=3.63 %Correlation coefficient=0.843

Design rainfall for 10 years in Damhusaen catchment

- Depth of design rainfall = 42.1 mm
- Colored part shows flooding into nodes with 10 years design Rainfall.
- Danish criteria of flooding

Flooding into drainage system with 10 years design rainfall before RTC 11

Design rainfall for 1 year in Damhusaen catchment

- Depth of design rainfall = 22.81 mm۲
- Colored part shows flooding into nodes with 1 year design Rainfall.
- Danish criteria of flooding

Flooding into drainage system with 1 year design rainfall before RTC

Selection of weirs for RTC

- Most critical weirs
- Weirs discharging into Lake
- Environmental problems
- Overflow volume

Development of Control Strategies

- Location of sensors
- Development of control strategies for all weirs
- Status of flooding
- Reduction in overflow

Flooding into drainage system with 01 year design rainfall after RTC

Flooding into drainage system with 10 years design rainfall after RTC

Results: Conclusions & Recommendations

- Calibration results confirmed model reliability for further applications.
- Flood maps from design rainfall indicates a need to modify the existing system.
- The developed RTC strategies directs a reduction potential of 40-60% to the overflow to solve environmental problems in Damhusaen Lake.
- RTC approach helps to reduce the huge potential of Bypass from wastewater treatment plant by using the storage volume of drainage system.
- As compared to static measures (construction/extension of storage volumes), RTC results are not only cost-efficient, but a flexible alternative as well.

Recommendations

- Return period of rainfall analysis can be done for different climate change scenarios to check the impact of climate change.
- Existing calibrated model can also be used to forecast urban flooding in the catchment.

Study Area – Damhusaen Catchment

Topography:

- Latitude : 55⁰ 61' to 55⁰ 73' N
- Longitude: 12⁰ 43' to 12⁰ 51' E
- Area : 37 km²

Network Information:

No. of Pumps:

90

81

268

- No. of Weirs:
- No. of Orifices

Population statistics:

- Population 2015: 262,327
- Population 2025: 306,858

Results: Calibration of Dry weather flow

•	Observed	Flow:	Blue
•	Simulated	Flow:	Green

Event Date	=09-04-2016
Observed volume	=68136.47 m ³
Simulated volume	=63881.28 m ³
Error in volume	=6.2 %

Event Date	=10-04-2016
Observed volume	=67209.9 m ³
Simulated volume	=63881.28 m ³
Error in volume	=4.9 %
Event Date	=09-04-2016
Event Date Observed volume	=09-04-2016 =65829.2 m ³
Event Date Observed volume Simulated volume	=09-04-2016 =65829.2 m ³ =63881.28 m ³

Results: Calibration of Wet weather flow

- Observed Flow: Blue
- Simulated Flow: Black

Event Date=05-04-2016Error in volume=6.8 %Observed peak $=3.931 \text{ m}^3/\text{sec}$ Simulated Peak $=3.853 \text{ m}^3/\text{sec}$ Peak Error=1.98 %Correlation coefficient=0.827

Event Date=15-04-2016Error in volume=6.0 %Observed peak $=2.6 \text{ m}^3/\text{sec}$ Simulated Peak $=2.9 \text{ m}^3/\text{sec}$ Peak Error=11 %Correlation coefficient=0.70

Results: Overall results of calibration of wet weather flow

- Comparison of actual and simulated volume
- Comparison of actual and simulated peaks
- Correlation coefficients for all events

