Impact of Land-use Land-cover Change during Five Decades on UHI Intensities and Thermal Comfort over a Sub-tropical Region in India

Manju Mohan
Professor and Head,
Centre for Atmospheric Sciences
Indian Institute of Technology, Delhi India
Email: mmanju@cas.iitd.ac.in, mmohan66@gmail.com
15 November, 2018
IPCC WGII AR5: Chapter 8. Urban Areas

- Urbanization alters local environments via a series of physical phenomena that can result in local environmental stresses. Much of key and emerging global climate risks are concentrated in urban areas.
- In the past, long-term trends in surface air temperature in urban centers have been found to be associated with the intensity of urbanization.
- More than half the world’s population in 2008 was living in urban centers and the proportion continues to grow (UN DESA Population Division, 2012)
- Three-quarters of the world’s urban population and most of its largest cities are now in low- and middle income nations implying stronger adaptation measures
- The spatial, temporal, and sustainability-related qualities of urbanization are important for understanding the shifting complex interactions between climate change and urban growth.
Large urban agglomerations with observed climate change
Trend period 1901–2012

Source: IPCC AR5
Urbanization reduces the wind speed in its vicinity which reduces both heat and pollutant flushing capacity of the region resulting in stagnation and exacerbating pollution levels.

Along with various heat related illness.

Urbanization leads to higher temperature and increase in thermal stress leading to health complications and reduction in work efficiency.

Key inference: Climate Change is proved to be very closely related to urbanisation affecting significant population and key to CC impacts reduction lies with mitigation and adaptation at city level.
• Anthropogenic heat fluxes across large cities can average within a range of approximately 10 to 150 W m$^{-2}$ but over small areas of the city can be three to four times these values or even more (Flanner, 2009; Allen et al., 2011).

• Projections suggest that by 2050, London’s nocturnal UHI in August could rise another 0.5°C, representing a 40% increase in the number of nights with intense UHI episodes (Wilby, 2007).

• Climate change in New York City is expected to increase extended heat waves, thus exacerbating existing UHI conditions (Rosenzweig et al., 2009). Increased nighttime minimum temperatures are associated with increased cooling demand and health-related stresses. Similarly for Tokyo and other cities, affects are more severe. Likewise for India.
IPCC has recognized* connections between urbanization and the development of UHI in several cities of the world including Delhi. Further, it states that for cities in India, the implications of future climate for connections between urbanization and the development of UHI have been defined (Mohan et al., 2011a,b, 2012).

The report includes above studies in Delhi which have explored this relationship:

- *Dynamics of Urbanization and LULC* (Mohan et al, 2011): shows there has been significant change in LULC which is expected to have led to changes in temperatures (ISRO, RESPOND Project; 2007-2010).

- *Urban Heat Island and Temperature Trends* (Mohan et al, 2011) wherein some signatures of heat island effect were obtained to relate urbanisation with change in temperature trends (ISRO, RESPOND Project; 2007-2010).

- *UHI based on ambient and satellite derived temperatures* (Mohan et al, 2012) in which systematic field campaign was carried out to estimate existing UHI effect (Indo-Japanese Cooperative Project on Heat Island Effect 2008-2015).

IPCC WGII AR5 Chapter 8, 2014
Urban Heat Island and Temperature Trends

- A consistent increasing trend was seen in the annual mean minimum temperatures indicating an overall warming trend over the NCR especially after 1990.
- Satellite based annually averaged DTR of entire Delhi shows a significant decreasing trend.
- Areas of Rapid urbanization exhibited a highly decreasing trend in DTR.
- Increasing warming trends reflect the contribution of changing land-use patterns and additional anthropogenic heat that may enhance the urban heat island intensities in the city.
An urban heat island (UHI) is defined as any urban area which has a tendency to be warmer than a surrounding rural/lesser developed area.
Urban Heat Island Effect over Delhi: Field Experiments

Objective:

- to understand the present scenario of heat-island phenomena in Delhi through surface meteorological observations in Delhi

In-situ Observations through Field Campaigns

- UHI-II : 6-10 March 2010

- 30 sites (27 surface stations, 3 weather stations)
Diurnal Variation of grouped UHI

UHI Comparison with other cities

Reported intensity of the urban heat island in various cities across the world

*Mohamed et al., 2012, 2013

Reported intensity of the urban heat island in various cities across the world

*Fig from Santamouris, 2015, SciTotal Env
Land use distribution of NCR India for various decades

Total NCR area: 86,991 km²

- Almost 17 fold increase in the urban and built up areas (126 km² of urban built up in 1972 to 2180 km² in 2014). This is 38 fold in Central NCR region.

- Conversion of dry croplands to irrigated and mixed croplands.

- Substantial decrease (40%) in water bodies is noticed.

Domain and Methodology

Simulation Period: 01 May 2012 – 15 May 2012

Cases of LULC

<table>
<thead>
<tr>
<th>Year</th>
<th>LULC of the Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1972</td>
<td>LULC of the year 1972</td>
</tr>
<tr>
<td>D1981</td>
<td>LULC of the year 1981</td>
</tr>
<tr>
<td>D1993</td>
<td>LULC of the year 1993</td>
</tr>
<tr>
<td>D2003</td>
<td>LULC of the year 2003</td>
</tr>
<tr>
<td>D2014</td>
<td>LULC of the year 2014</td>
</tr>
</tbody>
</table>

Physics Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>Lin</td>
</tr>
<tr>
<td>Cumulus</td>
<td>Kain Fritsch</td>
</tr>
<tr>
<td>Shortwave radiation</td>
<td>Goddard</td>
</tr>
<tr>
<td>Longwave radiation</td>
<td>RRTM</td>
</tr>
<tr>
<td>PBL scheme</td>
<td>YSU</td>
</tr>
<tr>
<td>Land surface model</td>
<td>Noah</td>
</tr>
<tr>
<td>Surface Physics</td>
<td>MM5</td>
</tr>
</tbody>
</table>

Model: Weather Research and Forecasting Model (WRF)

Prof. Manju Mohan
IIT Delhi, India

Workshop Status on Climate Sci and Tech., KL; 15 Nov., 2018
Effect on Diurnal Temperature range

- The difference in DTR of LST shows that it has decreased in the expanding urban area from 1972-2014.

- The differences in DTR of surface temperature show a noticeable decrease (2-3 K) in these regions.

- The urban area show maximum decrease in the LST values (\approx5 K).

Difference in DTR values of AT (upper panel) and LST (lower panel) between the corresponding decades and values in 1972
3 day averaged Night Time (1:30 am) UHI for various Decadal LULC over NCT

- Spatial Increase in night time UHI with increasing Urbanization
- 1-2 degree strengthening of night time UHI

Prof. Manju Mohan
IIT Delhi, India

Workshop Status on Climate Sci and Tech., KL; 15 Nov., 2018
What changed between 1972-2014!!
-Some Prominent canopy Layer UHI hotspots

- The Prominent Hotspots are the densely urbanized area such as Gurugram, Kalkaji, Old Delhi, Faridabad.
- The localities which have urbanized recently such as Manesar(M) and Greater Noida (G) also show development of UHI
What changed between 1972-2014!!
-Difference in nocturnal Surface UHI intensity

The maximum increase in UHI intensity corresponds to the underlying urbanization which has been maximum in the current (2014 LULC) decade.

- Maximum increase in SLHI is 4-5 K followed closely by 5-6 K.
- This increase is majorly in the expanded urban region in the NCR.
- 1-3 K increase is visible in the locations adjacent to/covered by the urban built up area.
What changed between 1972-2014!!
-Difference in nocturnal Canopy layer UHI intensity

- **3-4 K increase is visible in the densely built up region prominently in satellite cities viz.,
 Faridabad, NOIDA, Gurugram and Dwarka.**
- **Most of the area (816 sq km) experience an increase of 1-2 K in night time UHI followed closely by 2-3 K rise (787 sq km).**
- **This increase is majorly in the expanded urban region in the NCR.**
3 day averaged Day Time (1:30 pm) UHI for various Decadal LULC over NCR

Surface UHI

Prominent development of daytime UHI visible in latter decadal LULC of 2003 and 2014

Canopy Layer UHI

Prof. Manju Mohan
IIT Delhi, India
Urban Areas and Thermal Comfort

- The urban heat island effect has a direct relation with thermal comfort. It has the potential to prevent the city from cooling down, maintaining night-time temperatures at a level that affects human health and comfort (Tan et al. 2009; Lo et al. 2003; Tomlinson et al. 2011; Mavrogianni et al. 2011).

- Thermal stress is most relevant to people who spend a substantial time outdoors during a day such as pedestrians, cyclists, vendors, shopkeepers near roadside and most people from the lower strata of society who live in makeshift houses (Mohan et al. 2014).
Ramifications of UHI induced Thermal Discomfort

- Urban heat island induced thermal discomfort affects people both with and without access to cooling amenities.
- Higher temperatures have a serious impact on the electricity consumption due to building sector increasing considerably the peak leading to an additional electricity penalty of about 21 (±10.4) W per degree of temperature increase and per person (Santamouris et al., 2015). Further, heat released due to operation of electrical cooling devices further exacerbates the heat island effect in the city.
- This increase greatly outweighs the otherwise small beneficial decrease in heating demand in winter especially for sub-tropical/tropical cities.
- Hence, analysis of UHI vis-a-vis thermal comfort is essential with regards to both economic as well as environmental concerns.
- An increase of upto 2.5°C in heat index has been found at dense built up areas in comparison to non urban areas due to urban heat island effect. (Bhati and Mohan, 2018, Geoscience Letters)
Thermal Indices

- There are many indices devised for assessing thermal comfort such as
 - Heat Index (Rothfusz, 1990)
 - physiological equivalent temperature (PET) (Hoppe 1999),
 - Universal Thermal Climate Index (UTCI) (Blazejczyk et al. 2012),
 - Wet Bulb Globe Temperature (Yaglou and Minard 1957).
 - Robba Index (RI) (Robba 2011)

- Numerical weather prediction models like WRF and UCM help in assessing thermal comfort by means of providing a continuous distribution of spatial and temporal data.
Robaa proposed formula accounting for the combined effect of the three weather elements (dry air temperature, humidity and wind speed) on human discomfort. His formula, RI, is expressed as follows;

\[RI = 1.53 \ T_d - 0.32 \ T_w - 1.38V + 44.65 \]

Where,
- \(T_d \) = dry temperature (°C) of surface air
- \(T_w \) = wet bulb temperature in °C
- \(V \) = wind speed (m/s)

The range of applicability of this formula is wide and adequate for subtropical climatic region (Egypt's climate). The criterions of RI are given in Table 1.

Table 1. Criteria of, RI, at different discomforts.

<table>
<thead>
<tr>
<th>RI values</th>
<th>Human feeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI < 60</td>
<td>All people feel quite uncomfortable cooling.</td>
</tr>
<tr>
<td>60 ≤ RI < 65</td>
<td>50% of people feel partial uncomfortable cooling.</td>
</tr>
<tr>
<td>65 ≤ RI < 75</td>
<td>All people feel quite comfortable.</td>
</tr>
<tr>
<td>75 ≤ RI < 80</td>
<td>50% of people feel partially uncomfortable heat.</td>
</tr>
<tr>
<td>80 ≤ RI < 85</td>
<td>All people feel uncomfortable heat.</td>
</tr>
<tr>
<td>85 ≤ RI</td>
<td>All people feel extremely serious uncomfortable heat.</td>
</tr>
</tbody>
</table>

Reference: Robaa SM (2011*Atmospheric and Climate Sciences*, 1,
Blue line separates rural-cropland (left) and urban (right) stations. When the station converts to Urban, decrease in green comfortable hours with each decade is observed.

<table>
<thead>
<tr>
<th>RI values</th>
<th>Human feeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI < 60</td>
<td>All people feel quite uncomfortable cooling.</td>
</tr>
<tr>
<td>60 ≤ RI < 65</td>
<td>50% of people feel partial uncomfortable cooling.</td>
</tr>
<tr>
<td>65 ≤ RI < 75</td>
<td>All people feel quite comfortable.</td>
</tr>
<tr>
<td>75 ≤ RI < 80</td>
<td>50% of people feel partially uncomfortable heat.</td>
</tr>
<tr>
<td>80 ≤ RI < 85</td>
<td>All people feel uncomfortable heat.</td>
</tr>
<tr>
<td>85 ≤ RI</td>
<td>All people feel extreme serious uncomfortable heat</td>
</tr>
</tbody>
</table>

Prof. Manju Mohan
IIT Delhi, India

Workshop Status on Climate Sci and Tech., KL; 15 Nov., 2018
Number of Hours for various RI values at few stations across Delhi-NCR for all decadal LULC

Table: No of hours (in %) for various RI values for different decadal LULC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65 ≤ RI < 75</td>
<td>All people feel quite comfortable.</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>75 ≤ RI < 80</td>
<td>50% of people feel partially uncomfortable heat.</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>80 ≤ RI < 85</td>
<td>All people feel uncomfortable heat.</td>
<td>20</td>
<td>25</td>
<td>24</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>RI ≥ 85</td>
<td>All people feel extreme serious uncomfortable heat</td>
<td>44</td>
<td>47</td>
<td>51</td>
<td>52</td>
<td>55</td>
</tr>
</tbody>
</table>

Blue line separates rural-cropland (left) and urban (right) stations in various decadal LULC. When the station converts to Urban it can be seen:
- Decrease in comfortable hours with each decade.
- Increase in uncomfortable hours.
Impact of Urbanization on Air Quality and Health

Urbanization increases surface ozone concentrations by about 4.7%–8.5% for the nighttime and by about 2.9%–4.2% for the daytime.

Wang et al (2009). Advances In Atmospheric Sciences

Increasing temperature has projected growth in transmission window of malaria on an average by two months in many regions of India.

Patwardhan and Harit, 2007

Studies have shown exponential increase in mortality risk with increasing mean temperatures

Hajat et al., (2006). Epidemiology
Effective Space Utilization in Construction
Appropriate Heating and Power Plant Fuel Choices
Green Buildings
Sustainable Transportation Solutions
Effective Space Utilization in Construction
Energy Conservation and Efficiency
On-Site Renewable Energy Technologies
Mitigation Strategies

Prof. Manju Mohan
IIT Delhi, India

Workshop Status on Climate Sci and Tech., KL; 15 Nov., 2018
Recommendation

- Significant investment in sustainable cities development is needed as part of Climate Change Action Plan.

- The emissions are accounted in terms of carbon emissions from cities and industries. However, LULC has significant impact.

- The majority of Urbanisation in past few decades (as illustrated with NCR India example) is going to take place in middle and low income countries and thereby affecting most vulnerable population; it is therefore required to focus greater attention on adaptation strategies due to urbanisation and implement mitigation with best available technology with greater investments.
with Contributions from

Mr. Ankur P. Sati

Dr. Shweta Bhati
Dubai (1990-2007)
Shanghai (1990-2010)
Panama (1930-2009)
Tokyo (1960-2010)

Urbanization Across the World

THANKS

Prof. Manju Mohan
IIT Delhi, India

Workshop Status on Climate Sci
and Tech., KL; 15 Nov., 2018
References