

Disaster Resilient Cities: Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur

Atmospheric Forecasting

Mr. Mark Jackson

Dr David Carruthers, Dr Jenny Stocker

Cambridge Environmental Research Consultants, UK

Workshop on Building Disaster and Climate Resilience in Cities, 16 October 2019, Kuala Lumpur

Summary

- NUOF Hazard Forecasting project
 - Overview
 - Multi-hazard platform and atmospheric forecasts
- Short-term urban heat forecasts
 - Applying and verifying the model for Kuala Lumpur
- Short-term air quality forecasts
 - Applying and verifying the model for Kuala Lumpur
 - Recent haze episode and Indonesian fires

An international city-scale project for a tropical environment:

Disaster Resilient Cities: Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur

MULTIHAZARD PLATFORM

Dynamic & Static Data

Work is ongoing

Short-term urban heat forecasts

CERC'S ADMS-URBAN MODEL

Temperature and humidity modelling software

Preliminary Findings

The 'Disaster Resilient Cities' project team have

- Applied and verified ADMS-Urban for a tropical city: Kuala Lumpur
- Set up a short-term high resolution temperature forecast system

Predicted seasonal variation

Data provided by DOE, DBKL, Energy Commission, Ministry of Works, Met Malaysia

VERIFICATION OF ADMS-URBAN TEMPERATURES

Preliminary Findings

Spatial pattern 12:00 on 30 May 2015

Modelled

ADMS output (°C)
— 35.6398
— 32.1322 0 5 10 Km

Derived from satellite (Landsat)

Wang, K., et al Geoscience Letters, 2019 DOI:10.1186/s40562-019-0134-2

Diurnal variation

Measured

Modelled with
anthropogenic heat

Modelled without
anthropogenic heat

For, Petaling Jaya,

Uses measured meteorology (Met Malaysia) as upwind input and to compare with predictions

PRODUCTION OF ATMOSPHERIC FORECASTS

Detailed Temperature Short-Term Forecast

Work is ongoing

2-day forecast temperature maps

ADMS LOCAL TEMPERATURE FORECAST MODEL By UKMP, CERC,

FORECAST METEOROLOGICAL MODEL (WRF)

By Met Malaysia

UKMO FORECAST METEOROLOGICAL MODEL (UM)

By UK Met Office

UCL, Met Malaysia

PRODUCTION OF ATMOSPHERIC FORECASTS

Air Quality Short-Term Forecast

Work is ongoing

CERC'S ADMS-URBAN MODEL

World-leading atmospheric dispersion software

Preliminary Findings

The 'Disaster Resilient Cities' project team have

- Applied and verified ADMS-Urban for a tropical city: Kuala Lumpur
- Assessed policy scenarios such as road closure and regional haze
- Set up a short-term air quality forecast system

Data provided by DOE, DBKL, Ministry of Works, Met Malaysia Pollution maps –at street-scale resolution (~ 10 m near roads, ~ 50 m urban background)

VERY

UNHEALTHY

201 - 300

2 day forecasts issued by 04:00 Malaysian time

and low tolerance of physical

exercises to people with heart

and lung complications.

Affect public health

and public health

PM10, PM2.5, NO2, O3, SO2

Work is ongoing

using Malaysian Air

Pollutant Index

EU CAMS MONITORING 2019 Indonesian fires

Analyses (assimilating satellite obs) and 5-day forecasts of atmospheric composition/air quality – organic matter aerosol as proxy for haze

http://atmosphere.copernicus.eu/

Thanks to Mark Parrington, ECMWF/CAMS

VERIFICATION OF ADMS-URBAN AIR QUALITY

Preliminary Findings

- Measured meteorology (Met Malaysia) as input
- Measured hourly air quality (DOE) for background and to compare with predictions

Annual averages (2014-16)

2014 2015

2016

-Background

Statistics for nourly predictions								
Poll.	Year		NMS					
		Fb	E	R	Fac2			
PM ₁₀	2014	0.01	0.38	0.62	0.81			
	2015	-0.05	0.31	0.76	0.78			
	2016	0.23	0.25	0.55	0.81			
NO ₂	2014	0.00	0.27	0.52	0.82			
	2015	-0.05	0.29	0.45	0.79			
	2016	0.03	0.29	0.46	0.80			
NO _x	2014	-0.03	0.39	0.62	0.76			
	2015	0.05	0.35	0.61	0.75			
	2016	0.05	0.39	0.56	0.76			
O ₃	2014	-0.12	0.62	0.81	0.41			
	2015	-0.24	0.70	0.80	0.38			
	2016	-0.24	0.70	0.79	0.39			
SO ₂	2014	-0.05	1.24	0.21	0.57			
	2015	0.20	1.78	0.15	0.53			
	2016	0.00	1.15	0.18	0.54			

Fb = Fractional bias, NMSE = normalised mean square error, R = correlation,
Fac2 = fraction within 2x

VERIFICATION OF AIR QUALITY FORECASTS

Preliminary Findings

- Hindcasting for 24 May 2019 to 16 Sep 2019
- Used archived met forecasts (Met Malaysia) and global air quality forecasts (EU CAMS) to determine what system would have predicted

2 days in advance

 Compared forecast and observed Malaysian Air Pollution Index bands:

API Bands

GOOD
MODERATE
UNHEALTHY
VERY UNHEALTHY
HAZARDOUS

		Number	Time period	Within correct band or out by
Station	Pollutant	of points		one band
BM	NO2	90	Days	90.0%
C	NO2	89	Days	94.4%
PJ	NO2	92	Days	83.7%
ВМ	O3	2091	Hours	98.9%
C	03	2150	Hours	98.9%
PJ	03	2177	Hours	99.8%
ВМ	PM10	92	Days	100.0%
C	PM10	92	Days	100.0%
PJ	PM10	92	Days	100.0%
ВМ	PM2.5	92	Days	98.9%
C	PM2.5	92	Days	98.9%
PJ	PM2.5	92	Days	98.9%

Stations: BM = Batu Muda, C= Cheras, PJ = Petaling Jaya Measured data provided by DOE

Thanks to all colleagues in the Disaster Resilient Cities project

Particularly Prof Talib (UKM), Mr. Ammar (Met Malaysia), Dr. Azlan (CoRE), Dr Kai Wang (UCL)

Mark.Jackson@cerc.co.uk

Cambridge Environmental Research

Consultants, UK

