HIGH RESOLUTION FLOOD MAPPING FOR KUALA

Helen Smith, JBA Risk Management (UK)

Valeriya Filapova, JBA Risk Management (UK)

Dr Iain Willis, JBA Risk Management (Singapore)

AGENDA

- Project Aims
- Modelling
- Stationarity research
- Virtual Reality –KL flood risk scenario modelling

Flash floods hit parts of KL city following heavy

Several areas in KL hit by flash floods after heavy rain

Downpour causes flash floods in Klang Valley

www.jbarisk.com

- Disaster resilient cities
 - Develop return period flood hazard maps for DBKL
 - Close collaboration with Malaysian NUOF partners to make use of 'best available' local data and knowledge
 - Use of the maps
 - Deployed in the multi-hazard platform
 - Planning
 - Flood risk communication
 - Mitigation
 - Encourage wider stakeholder engagement

Elevation data

- Acquire and process bare-earth Digital Terrain Model
- Removal of structures such as levees and bridges

Hydrology

- Estimate return period rainfall hyetographs
- Estimate hydrological losses and variable runoff rates
- Estimate return period river flows for all streams & rivers

Inundation mapping

- Direct-rainfall hydraulic modelling to capture pluvial flood hazard
- River hydraulic modelling

GIS Data / Map creation

- Process hydraulic model output into seamless water depth layers
- Creation of additional information such as risk scores

KUALA LUMPUR FLOOD MAPS

- Direct rainfall (Flash Flooding)
- River Flood Maps
 - With SMART tunnel
 - Undefended
- Return periods 20, 50, 100, 200

Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community

Non-stationary flood frequency analysis in Langat basin, Malaysia

V. Filipova¹

JBA Risk Management, Skipton, United Kingdom e-mail: valeriya.filipova@jbarisk.com

11th World Congress on Water Resources and Environment (EWRA 2019) "Managing Water Resources for a Sustainable Future" Madrid, Spain, 25-29 June 2019

STATIONARITY RESEARCH

- Land use change has been significant
- Forestry decrease of 20% (1981-2001)
- Urban area increase of 15% (1981-2001)
- Developments
 - KL airport
 - Multimedia Super Corridor (MSC)

 Non-stationarity test - GAMLSS method (Stasinopoulos and Rigby 2007)

1996

2016 Majid et al 2016

- Statistical significance Mann-Kendall & Petit test
- Suggests Non-Stationarity flood frequency analysis is required for the Langat basin
- Faster flood response / Increase AMAX

Difference in the 100-year return period estimate with time

VIRTUAL REALITY - KL FLOOD VISUALISATION

THE SMALL PRINT

© JBA Risk Management Limited 2019. All rights reserved.

The information in this presentation was prepared by JBA Risk Management Pte Ltd on 15 October 2019 for the *Disaster Resilient Cities workshop in Kuala Lumpur* and is for illustrative purposes only. Please don't use it without JBA's permission.

Copyright and acknowledgements

JBA Risk Management Ltd
JBA Risk Management Pte Ltd
Innovate UK & MIGHT

GLOBAL LEADERS IN FLOOD RISK MANAGEMENT.

Get in touch

hello@jbarisk.com

UK

+44 1756 799919

USA

+1 510 585 8401

EUROPE

+49 8092 2326756

SINGAPORE

+65 968 62 968

www.jbarisk.com

@jbarisk