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Abstract: High air temperature and high humidity, combined with low wind speeds, are common
trends in the tropical urban climates, which collectively govern heat-induced health risks and outdoor
thermal comfort under the given hygrothermal conditions. The impact of different urban land-uses on
air temperatures is well-documented by many studies focusing on the urban heat island phenomenon;
however, an integrated study of air temperature and humidity, i.e., the human-perceived temperatures,
in different land-use areas is essential to understand the impact of hot and humid tropical urban
climates on the thermal comfort of urban dwellers for an appraisal of potential health risks and the
associated building energy use potential. In this study, we show through near-surface monitoring
how these factors vary in distinct land-use areas of Kuala Lumpur city, characterized by different
morphological features (high-rise vs. low-rise; compact vs. open), level of anthropogenic heating
and evapotranspiration (built-up vs. green areas), and building materials (concrete buildings vs.
traditional Malay homes in timber) based on the calculated heat index (HI), apparent temperature
(TApp) and equivalent temperature (TE) values in wet and dry seasons. The results show that the
felt-like temperatures are almost always higher than the air temperatures in all land-use areas, and
this difference is highest in daytime temperatures in green areas during the dry season, by up to about
8 ◦C (HI)/5 ◦C (TApp). The TE values are also up to 9% higher in these areas than in built-up areas.
We conclude that tackling urban heat island without compromising thermal comfort levels, hence
encouraging energy use reduction in buildings to cope with outdoor conditions requires a careful
management of humidity levels, as well as a careful selection of building morphology and materials.

Keywords: thermal comfort; land-use; tropics; urban microclimate

1. Introduction

An urban heat island (UHI) is often defined as the significant temperature differential between
urban and surrounding rural areas [1]. This is primarily attributable to the reduced evapotranspiration
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due to less greenery, construction materials with higher thermal admittance, lower ventilation due to
high surface roughness, and higher anthropogenic heat sources in cities, such as traffic and waste heat
from air-conditioning (AC) systems [2]. Quantification of UHI and its implications on heat induced
risks on health and wellbeing has gained considerable prominence in academic literature despite
the fact that temperature has been shown to be an insufficient metric by a tremendous number of
epidemiological studies to appraise heat stress and mortality, which are more meaningfully linked with
the combined impact of temperature and humidity [3–10]. This combined impact of temperature and
humidity is better indicative of the physiological experience of heat, and the higher the humidity, the
higher the perceived temperature, the higher the potential health risks, the poorer the thermal comfort,
and hence, the higher the building energy use to keep the indoor conditions at favorable levels. Despite
recent sporadic studies that demonstrated that humid heat is increasingly a global trend [11] and
highlighted urban moisture as a prevalent issue and an aggravator of heat island impact [12–15] with
important implications on health and energy use [16], the scholarly discourse on urban microclimate
under current and future climatic trends is still heavily dominated by air temperatures alone.

In this respect, our presuppositions with regards to the thermal comfort in different land-use areas
need also to be revisited, especially in tropical and subtropical cities (compared to mid-latitude cities),
because (1) high air temperatures and UHI in tropical and subtropical cities is an almost year-round
critical phenomenon, (2) humidity levels are rather high due to frequent and intense precipitation, and
(3) ventilation is low due to overall lower wind speed values, further exacerbating the adverse impact
of humidity on perceived temperatures.

The aim of this study was to demonstrate how urban microclimate and hence thermal comfort
and building energy use potential vary in different land-use areas in Kuala Lumpur in wet and dry
seasons, with specific emphasis on heritage and green areas, through multiple metrics by using on-site
monitoring data. Kuala Lumpur is located in West Malaysia over the tropics at 3◦09′35” N 101◦42′00”
E. The urban climatology of (sub)tropical megacities is in general a relatively sparsely studied field [17];
however, the evolution and progression of urban heat island in Kuala Lumpur (see [18] for an extensive
review of some of these previous studies) and the health implications [19,20] have been examined
and documented rather extensively: Greater Kuala Lumpur, with a population expected to exceed
10 million in 2020, similar to other Asian megacities, suffers from substantial urban heating [21],
which is attributable mainly to the rate of urbanization (and conurbation), which is among the highest
in Southeast Asia [22], subsequent changes in the cityscape and land-use, and increasingly higher
anthropogenic heating due to steep population rise.

2. On-Site Monitoring

2.1. Monitoring Equipment and Locations

In order to identify the trends in near-surface air temperature (T) and relative humidity (RH)
in different land-use areas, ibutton DS 1923 Hygrocon sensors (Model DS1923F5, Maxim Integrated,
San Jose, CA, USA) (sensor resolution and accuracy: (T) 0.0625 ◦C, <0.5 ◦C; (RH) 0.04%, <5%) were
used along with radiation shields (HOBO, model RS3, Onset Computer, MA, USA), and readings were
logged every half an hour. The sensors were set up at approximately 2.5 m height, so that the readings
were representative of the physiological hygrothermal experience of the urban dwellers while also
ensuring the safety of the sensors.

Using this setup, a rigorous on-site monitoring work was carried out in 11 locations within
central Kuala Lumpur, selected mainly based on their morphological/constructive features, and
built-up/green differentiation. These included the following built up areas: (1) Intercontinental Hotel,
(2) Jalan P Ramlee, (3) Chow Kit, (4) Malaysia Tourism Centre, (5) Kuala Lumpur City Centre (KLCC)
Park, (6) Jalan Ampang-Jalan Tun Razak intersection, and (7 and 8) two locations in Kampung Baru.
Kampung Baru is an urban heritage site characterized by traditional Malay homes made of timber, in
contrast to the mainly concrete building stock in all other built-up measurement sites (see Section 2.2
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for more information). In addition to these built-up areas, (9–11) three green areas, i.e., Perdana Botanic
Gardens, Tugu Negara, and Eco Park, were included in the monitoring campaign.

In order to correctly categorize the land-uses the built-up monitoring locations represent, the
three-dimensional (3D) building data was used to calculate the average level of compactness and
average building height within the 200 m around the sensor locations (Figure 1). The assessment
regarding the level of compactness was done based on the λp parameter, which was calculated as the
ratio of the planar area within the grid cell occupied by the buildings to the total grid area [23].
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Figure 1. Average λp and building heights for the monitoring locations within 200 m distance.

The locations with an average λp below and above 0.3 were labelled as open and compact,
respectively. Similarly, those with the average building height below and above 40 m were labelled as
low- (inclusive of medium-rise) and high-rise, respectively.

The three green areas monitored here, the Perdana Botanic Gardens (BG), Tugu Negara (TN), and
Eco Park (ECO), each have varying degrees of tree cover: BG is very open with almost no trees, TN is
open with few trees, and ECO is thickly covered by high trees. Therefore, we had: Compact High-Rise
areas (CHR) [n = 2, Intercontinental Hotel (IH), Jalan P Ramlee (JPR)], Compact Low-Rise (CLR) [n = 3,
two locations within Kampung Baru (KB1 and KB2) and one in Chow Kit (CK)], Open High-Rise (OHR)
[n = 2, Kuala Lumpur City Centre Park (KLCC) and Jalan Amp (JA)], Open Low-Rise (OHR) [n = 1,
Malaysia Tourism Centre (MATIC)], Open Low-Green (OLG) [n = 2, Perdana Botanic Gardens (BG),
Tugu Negara (TN)] and Compact Tall-Green (CTG) [n = 1, Eco Park (ECO)] (Figure 2 and Table 1).
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Table 1. On-site monitoring locations (photos taken by K. Wang and M. Othman in 2017).

Open
High-Rise

(OHR)

Jalan Ampang Near KL
City Centre Park

(KLCC)

Jalan Ampang—Jalan
Tun Razak Intersection

(JA)

Green (OLG
and CTG)

Botanic
Gardens (BG)

Tugu Negara
(TN) Eco Park (ECO)

Open Low- Rise
(OLR)

Malaysia
Tourism Centre

(MATIC)
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2.2. Kampung Baru (KB)

Kampung Baru (also spelled as Kampong Bharu (KB), see Fujita, 2010; meaning “New Village”) is
an urban heritage site located between Chow Kit and KLCC, i.e., right at the heart of Kuala Lumpur’s
business and financial center, surrounded by major roads. KB has a total area equal to 110 hectares
with a population of 45,000 [24], making this low-rise settlement one of the most densely populated in
the city.

Initially a mining area, KB was founded in 1899 as a 91 ha Malay Agriculture Settlement (MAS) to
allow Malays a rural life in Kuala Lumpur, although it gradually expanded beyond the MAS, with
relatively new-built, non-traditional housing, until it reached its current state. KB is to this day a
wholly Malay area and is still governed by a Board of Management in line with the initial management
plan set up by the British; however, it is now a completely residential area as opposed to its original
multifunctional use combining residential and agricultural purposes [25]. The protocols initially set
up to define the land title within the MAS area in KB are still in place, which greatly contributed to
remaining almost untouched to the present day. However, echoing a desire ongoing since the 1970s [26],
the government in their 2020 development plan states that “many of the original buildings ( . . . ) are no
longer compatible with their surroundings” and mentions the potential to developing it into a “modern
commercial area” because of its proximity within the city center [24], which attracted fierce criticism
both from the residents themselves, and the public in and outside Malaysia (e.g., [27,28]). The political
and economic pressures pushed residents to join forces under various organizations in order to facilitate
efficient negotiations with the government to ensure sustainable (re)development of the neighborhood.
However, following many town meetings and the government’s ever increasing land price offers, the
majority of the residents are reported to have agreed on the development of a “Taman Warisan Melayu”
(Malay Heritage Park) in the neighborhood: the project involves the reconstruction/refurbishment of
11 traditional homes and preservation of a few monumental landmarks including the 119 year-old
Kampung Baru Mosque, along with the development of 45,000 new houses, an upgrade of the famous
Kampung Baru food markets with car parks, and other amendments regarding public transport
and pedestrian routes (all with dire implications for the original spatial and social setting of KB),
though there are reportedly still major issues around land ownership [29–34]. This entangled state of
multi-ownership, as well as the absentee landlords, who are difficult to access to discuss an eventual
purchase of their lands, are possibly the main reason for the “development” of KB becoming a reality
only some 50 years after it was first proposed [35].

At an intriguing contrast to the skyscrapers visible from within it, at the time of writing this paper
KB is still home to some fine examples of traditional timber Malay homes (Figure 3), mainly post and
lintel structures with steep roofs, including long roofed typologies, rumah limas (“five roofs”) with
crafted carpentry joinery, representative of elaborate workmanship this building culture flourished
on [36]. A significant number of these are on stilts, raising floors high above the ground level to protect
the building envelope from dampness, catch high winds and facilitate ventilation, and reduce flood
damage potential [37,38]. It has been shown that during the “normal” floods that occur commonly
during the north-east monsoon, i.e., the wet season, the flood height does not exceed the stilt heights of
traditional housing in a given area [39]. The slope of the roofs facilitates easy discharge of rainwater,
while the overhangs and gables provide protection from wind driven rain and the natural materials
used to build it (such as attap or reeds) prevent heat absorption. The many windows and the lack of
conventional partitioning between various usage areas within homes further encourage air circulation
providing passive cooling, preventing stagnation and development of moisture-induced decay in the
building envelope [40–42]. Therefore, traditional Malay typologies have been developed to ensure
the highest comfort under prevailing hot and humid climatic conditions and to provide the most
efficient protection from environmental hazards common to the tropics, having much to offer to modern
sustainable and climate-resilient building design, as other vernacular typologies do.
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Figure 3. Some examples from the traditional Malay building stock in Kampung Baru (photos taken by
Y. D. Aktas in 2016).

2.3. Diurnal Average Temperature and Relative Humidity Variations

The diurnal near surface air T and RH variations in the monitoring locations are shown in
Figure 4a–d for a month each in wet and dry seasons in 2018: from 20 February to 18 March, which
correspond to the end of the rainy Northeast Monsoon, and from 9 June to 1 July, which is a part of
the drier Southwest Monsoon, respectively [18,43]. The selection of these two different months also
provides an opportunity to delve into the impact of solar angle on the thermal environment, as Kuala
Lumpur is located near the equator the solar radiation is stronger in March, while the solar elevation
angle is higher in June.

In order to improve the readability of the graphs, trends under the same land-use area with
negligible differences have been averaged, such as KB1 and 2, two open low green spaces, i.e., BG and
TN, two CHR locations, i.e., IH and JPR, and two OHR locations, i.e., KLCC and JA.

The results show that the T and RH ranges in wet and dry seasons are quite similar, although they
are slightly narrower in the latter case. The highest T and lowest RH appear in CLR locations (CK and
KB) during daytime, due to less shading that results in higher solar gain, as well as the anthropogenic
heat from the traffic. While CK shows the same, among the highest T, with the lowest RH trends during
the nighttime, KB tends to show lower T and higher RH trends, which is indicative of more moisture
inducing anthropogenic activity such as outdoor cooking, and less anthropogenic heating (both traffic
and waste heat from AC systems). This also demonstrates the impact of building materials: the concrete
buildings dominating CK have both higher unit thermal storage and thicker walls (i.e., more material
available to absorb heat) than traditional kampung houses of KB, made of thinner, timber walls (for a
more comprehensive discussion on building materials see [44]). Interestingly, Ts on OHR are similar to
CLR Ts during the wet season (March), while they are lower than CLR Ts during the dry season (June).
This is considered to be because OHR locations are exposed to higher solar radiation levels due to the
higher solar angle of Kuala Lumpur during the wet season. CHR locations, on the other hand, are
situated somewhere in the middle of all land-use areas in terms of both daytime and nighttime T and
RH values. Daytime Ts in CHR locations were found to be lower than CLR and OHR areas, as expected,
due to the shading effect and large heat storage in these areas owed to the building morphology,
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providing increased surface area and volume that can trap and absorb more solar radiation in the
daytime. This is released at nighttime, making the nighttime Ts at CHR locations comparable to those
at CLR locations and OHR. The lower radiative cooling due to smaller sky view factor may also play a
role in the relatively higher nighttime Ts in CHR locations. The lowest daytime Ts are observed in ECO,
as expected due to more shading from the trees. However, the temperatures in ECO are higher than
that in BG and TN during nighttime. This is considered to be because of the larger nocturnal cooling in
BG and TN, due to lower roughness, which may result in higher wind speeds and convection rates, as
well as the larger radiative cooling thanks to a more open morphology.
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3. Metrics Indicative of Thermal Comfort and Energy Use

To demonstrate the importance of accounting for the impact of humidity while assessing heat
induced risks on human health and wellbeing, we first used the monitoring data for an appraisal of
mortality likelihood using the risk curves derived by Mora et al. [45] identifying the hygrothermal
thresholds for lethal events, using a range of daily climatic data including near-surface air temperature,
near-surface relative humidity, solar radiation, and ventilation (Figure 5a,b). The blue curve here
indicates the threshold identified by means of Support Vector Machines to best separate lethal and
non-lethal conditions based on mean daily surface air T and RH, while the red curve is the 95%
probability threshold. As seen, the T and RH values obtained from various locations in Kuala Lumpur
indicate that the microclimatic conditions in all land-use areas pose health risks, and green areas are
not in any way devoid of risk due to much higher average daily mean relative humidity values than
the built-up areas in both seasons.

This clearly shows the need for more comprehensive metrics to assess thermal comfort and
heat-induced risk on health and wellbeing. In this paper we used three of these to discuss their
suitability for the tropics: heat index, apparent temperature, and equivalent temperature.
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Figure 5. Measured average daily and average daily mean temperature (T) and relative humidity (RH)
values in different land-use areas against the risk threshold derived by Mora et al. [45] in wet (a) and
dry months (b).

3.1. Heat Index

Heat index is one of the “simple” indices to determine felt-like or perceived temperature, developed
by [46] by multiple regression from the first version of Steadman’s apparent temperature model (1979),
which is discussed in detail in Section 3.2 [47,48]:
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where T is air temperature (◦C) and RH is the ambient relative humidity (%). The calculated average
diurnal heat index variations for different land-use categories are shown in Figure 6. As can be seen,
the heat index values are almost always higher than the measured air temperature values. According
to the assessment scale of heat index, the index values between 27 ◦C and 32 ◦C would be category
“caution,” where the possible heat disorders for people in high risk groups would include fatigue,
possible with prolonged exposure and/or physical activity. The heat indexes between 32◦C and 41 ◦C,
on the other hand, would call for “extreme caution,” where sunstrokes, muscle cramps, and/or heat
exhaustion possible with prolonged exposure and/or physical activity are among possible health
risks [47]. As seen in Figure 6, an assessment based only on air temperatures would significantly
underestimate heat experience in most of the land-use areas with the maximum temperatures lying on
the 34–35 ◦C range as opposed to maximum heat indices at around 40 ◦C, which are out of the thermal
comfort range by a margin dangerously beyond what is accepted as tolerable, i.e., ±1.1–1.7 ◦C [49], and
fall almost entirely under caution and extreme caution categories. Importantly, the risk categorization
used here might not be representative of people native to tropical areas. While there are no conclusive
studies regarding how heat-induced health risks vary in the tropics, the natives of tropical areas are
reported to have a higher tolerance to elevated temperature and humidity conditions [50–54].

The results indicate that the felt-like temperatures in green areas are up to 5 ◦C lower than the
built-up areas at night and early in the morning, while the daytime temperatures in these locations
can be comparable to or even higher than those in the built-up areas. Interestingly, while the daytime
temperatures are highest in Kampung Baru among built-up case study monitoring sites, they are
lowest at night and in the small hours, which is indicative of the lower heat absorption and storage
capacity of the building stock in this neighborhood. The lowest daytime temperatures are observed in
CHR locations, as expected, owed to the high thermal admittance capacity.
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Figure 6. Diurnal variation of calculated heat index in wet (a) and dry (b) seasons for different land
use areas.

3.2. Apparent Temperature

In addition to heat index, we also used Steadman’s Universal Apparent Temperature Model [55]
for a further appraisal of the felt-like temperatures in different land use areas, accounting also for
ventilation as follows:

TApp = −2.7 + 1.04× T + 2.0× P− 0.65υ (2)

where TApp is apparent temperature (◦C), T is air temperature (◦C), P is water vapor pressure (kPa),
which was estimated from our monitored temperature and relative humidity using procedures
described by Steadman [56], and υ is the wind speed at 10 m above ground (m/s).

Meteorological Department data from Subang station show that wind speeds can be as high as
7 m/s, while the average values do not exceed 3.5 m/s (Figure 7). The often-lower median values point
out overall very still conditions, as expected in the tropics. Importantly, Subang is in Kuala Lumpur’s
suburbs in the west, and the wind speed values in the city center are expected to be even lower, due
to the increased surface roughness from the buildings. As our monitoring program did not include
the measurement of wind speeds, we used wind speed modelling via ADMS-Urban (Atmospheric
Dispersion Modelling Software) [57] to estimate wind speeds in different land use to use in the apparent
temperature calculations.

ADMS-Urban is a fast local-scale urban climate modelling tool, widely used to calculate the
spatiotemporal variation of neighborhood or city scale urban temperatures and dispersion modelling.
The parametrization and land-use input data used in the ADMS modelling of Kuala Lumpur to study
the urban temperature perturbations was previously described in [58]. In addition to this, in this study
a detailed urban canopy model with 200 m resolution was developed to quantify the roughness length
in terms of building density and geometry [59] to model hourly wind speeds at 10 m height. The
modelled diurnal wind speed trends for 20 February 2018 and 9 June 2018 are shown in Figure 8a,b,
respectively. 20 February and 9 June are the first days of our selected wet and dry season windows,
respectively, and it was assumed that the overall diurnal wind speed profiles obtained for these two
days are representative for the rest of the selected months. The obtained trends clearly demonstrate
the contrast of wind speed diurnally between the two green areas, BG and TN, and built up areas for
both seasons, with slightly higher values in the dry season.

The diurnal apparent temperature variations calculated as such are shown in Figure 9, which
indicates that the apparent temperatures are also always higher than the measured air temperatures
shown in Figure 4a,b, especially in the wet season, on green areas and at night, while the ranking
of various land-use areas in terms of the thermal comfort they offer does not change. While there
are no general risk categories for apparent temperature, similar to the ones we report above for heat
index, previous studies suggest that the apparent temperature thresholds for defining levels, beyond
which mortality risk increases significantly can be as low as 30.7 ◦C for Taipei [60], 27 ◦C for Korea,



Atmosphere 2020, 11, 652 10 of 17

and 29.4 ◦C for the Mediterranean basin [6], highlighting the potentially dangerous levels of apparent
temperatures in all land-use areas we investigate in Kuala Lumpur. The high temperature values in
CK combined with very low wind speed values make this area the one with the highest apparent
temperatures, around 4 ◦C higher than the ambient temperatures in this location at its peak. Because
trees have a significant impact on the urban wind flows [61] and as the ADMS modelling is unable to
process complex terrain and urban canopy flow simultaneously, and considers only building obstacles,
the modelled diurnal wind profile for ECO might not reflect the low ventilation levels prevailing in this
very intensely tree covered park. Therefore, we also calculated TApp values based on a no-wind case in
ECO, which led to around 1.5 ◦C higher felt-like temperatures in this location than TApp estimates
if this was a largely open, grass covered park such as BG and TN, indicating thermal comfort levels
comparable to a built-up area.
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3.3. Equivalent Temperature

In this study, we also focused on equivalent temperature (TE), which shows the total enthalpy
from both sensible and latent heat [3,62], and is calculated as follows:

TE =
CpT + Lq

Cp
(3)

where Cp is heat capacity of air, taken as 1.005 kJ/(kg·◦C), T is the air temperature (◦C) measured at
each land-use location, L is the latent heat of vaporization taken as 2.5 × 103 kJ/kg, and q is the specific
humidity in kg/kg, which was calculated using the observed RH and air pressure based on the empirical
relationship by [63]. As we do not have air pressure measurements at monitoring locations, the air
pressure data for Subang Station, which is located at a similar elevation as all the monitoring locations,
were used in this study. The data are available from the Integrated Surface Database (ISD) at NOAA
(https://www.ncdc.noaa.gov/isd/data-access). Note that the air pressure data are 3-hourly at Subang
Station, which were interpolated to a half-hourly dataset in analogy with the monitoring data by Fast
Fourier Transform method. The findings can be seen in Figure 10. The results show that open green
areas (BG and TN) have the highest equivalent temperature in the daytime, though the air temperature
is much lower, due to the very high humidity in these areas. Kampung Baru offers the second highest
daytime equivalent temperature, which may be attributed to the high anthropogenic moisture in this
area due to a high number of street food vendors. The difference between the equivalent temperature
in different land-use areas is otherwise rather small.
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4. Discussion

This study used a near-surface monitoring campaign in 11 different locations in Kuala Lumpur,
Malaysia, in order to identify temperature and humidity variations in their associated six different
land-use categories in wet and dry seasons, for an appraisal of outdoor thermal comfort, on a
comparative basis. The results are briefly discussed below in terms of the role of green areas,
morphology, and building materials.

Urban green areas are a major source of evapotranspiration, which is a natural cooling mechanism,
and therefore, is considered one of the most obvious ways of mitigating elevated urban temperatures.
While greenery is indeed effective at reducing urban temperatures (e.g., [64]) at different levels [65],
our results show that temperatures in these areas can still be dangerously high in a tropical city. More
critically, the thermal comfort in green areas is further compromised due to high humidity levels and,
depending on the local morphology, very low ventilation rates. Our results show that while these areas
offer the best thermal comfort in the evening and at night, regardless the season, the daytime thermal
comfort in open, grass covered green areas (Botanic Gardens and Tugu Negara) is comparable to
built-up areas in the wet season, while it is poorer than the built-up areas in the dry season, especially
from early-morning to mid-afternoon, with higher felt-like temperatures of up to 8 ◦C (heat index)/5 ◦C
(apparent temperatures) than air temperatures measured in these locations. As the general human
perception of these spaces is that they are thermally comfortable even when the measurements show
that they are not [66], this is important to address while advising about risk areas and times for
vulnerable segments of the population (e.g., elderly, very young, those with cardiovascular illnesses),
and while regulating the maintenance of these areas (e.g., watering times). The Eco Park, which is a
thickly wooded green area, was found to offer the lowest daytime temperatures; however, thermal
comfort here can converge to built-up areas, when the humidity levels and very low wind speed values
due to high surface roughness are accounted for.

The reduced diurnal temperature values, i.e., cool islands, observed in the Compact High-Rise
areas, indicate a strong morphological advantage in the daytime over Open and Low-Rise settings,
as expected. The difference in results obtained from two different Open Low-Rise locations (i.e.,
Chow Kit and Kampung Baru), however, indicate the impact of traffic-induced anthropogenic heating
and building materials: use of timber, which has lower thermal inertia and thermal storage capacity,
combined with the constructive features of timber housing with thinner walls (see [44]), lead to a
smaller thermal mass and higher daytime temperatures in Kampung Baru than in Chow Kit with a
building stock with similar morphological characteristics but made in concrete and with thicker walls.
This disadvantage in the daytime, however, becomes a major benefit at nighttime: Kampung Baru
offers the highest nighttime thermal comfort of all built-up areas.

Previous studies found out that in warm climates/seasons, there is a strong correlation between
the outdoor and indoor ambient conditions [67]. Therefore, all three metrics used here can be used
as some proxy to assess the building energy use potential under the given outdoor hygrothermal
conditions. However, only the equivalent temperature uses absolute humidity, and it is therefore
best representative of the cooling load, which is the energy required to remove both sensible and
latent heat from an enclosed space through AC systems to maintain a constant indoor dry-bulb air
temperature and humidity. Our calculated mean diurnal equivalent temperatures mimic the heat
index and apparent temperature findings, though with a more accentuated increases in green areas in
the daytime with up to 9% higher values than built-up areas. Of all monitoring locations investigated
here, the transferability of outdoor thermal comfort levels to the building energy use potential must be
the weakest in Kampung Baru as the building stock here is less reliant on the AC systems to keep the
indoor conditions at comfort levels thanks to the constructive features developed over time to tackle
hot and humid climatic conditions by encouraging ventilation through the building and limiting heat
absorption by materials used and architectural detailing.

Based on these results, humidity and low wind speed values emerge as critical variables governing
thermal comfort in tropical areas. Any mitigation method put in place to tackle high urban temperatures,
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or any urban redevelopment work should consider their impact on humidity and ventilation patterns.
Our results do not indicate a significant difference in thermal comfort in dry and wet seasons, at least in
the comparative performances of the land-use areas we examine here (cf. [15]). Importantly, it should
be noted that within the complexities of an actual urban setting, every area is either a conglomeration
of various features that can be defined as low- or high-rise, or open or compact, making labelling them
with a given urban morphology class very difficult, or is very closely surrounded by other areas able to
be more closely aligned with other, sometimes quite opposing morphologies. To complicate things
even further, the traffic-induced heating greatly impacts urban microclimate, especially through the
main transport network arteries. Therefore, the temperature and relative humidity values obtained
from each site which has been named as a certain land-use area here do not necessarily reflect the
ideal hygrothermal characteristics of their associated land-uses. For instance, increasingly heavy
traffic surrounding Kampung Baru is known to have made the urban cool island which site once was
disappear [68,69].

5. Conclusions

This study shows that our presumptions with regards to thermal comfort levels in different
land-use areas should be revisited, especially in a tropical context. In the face of a changing climate and
ever-increasing temperatures, mitigating urban heat island without compromising thermal comfort
levels and inflating building energy use requires a careful management of humidity levels, as well
as a careful selection of building morphology and materials. Urban climate models and a scholarly
discourse relying only on-air temperatures will critically underestimate the health, wellbeing, and
energy use implications under current and future climates.

Our results, based on mean diurnal variations in different thermal comfort indexes, suggest
critically poor thermal comfort levels under normal conditions, even in green areas. A higher risk
is expected under increasingly common extreme conditions, such as heatwaves, and absence of
background wind, which should be investigated further.

Finally, the pressures that urban heritage sites are facing in growing megacities are not unique to
Kampung Baru; rather, it is a global trend with different cultural and legal backdrops against which
heritage preservation operates. Vernacular architecture with constructive and architectural features,
which have been proven sustainable under a given climatic context do give important clues about
thermal comfort and energy efficiency to be considered in modern urban planning, development,
and regeneration.
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Abbreviations

T Air temperature (◦C)
RH Ambient relative humidity (%)
P Water vapor pressure (kPa)
υ Wind speed at 10 m above ground (m/s)
TE Equivalent temperature (◦C)
CLR Compact Low-Rise
OLR Open Low-Rise
JA Jalan Ampang
L Latent heat of vaporization (kJ/kg)
JPR Jalan P Ramlee
BG Botanic Gardens
ECO Eco Park
CHR Compact High-Rise
OHR Open High-Rise
CK Chow Kit
KB Kampung Baru
IH Intercontinental Hotel
HI Heat index (◦C)
TApp Apparent temperature (◦C)
Cp Heat capacity of air (kJ/(kg·◦C))
q Specific humidity (kg/kg)
MATIC Malaysia Tourism Centre
TN Tugu Negara
KLCC KL City Centre Park
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