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Landslide susceptibility assessment was conducted in Canada Hill, Sarawak, Malaysia
through a combined bivariate statistics and expert consultation approach using
geographical information system, which captures landslide-conditioning parameters
specific to the study area; to ensure its usefulness in practice. Over the past four decades,
many landslide parameters and increasingly sophisticated statistical methods have been used
in landslide research. However, the findings have had very limited use in practice as the actual
ground conditions are not well represented. The weakness is due to poor quality of data in
landslide inventories and inadequate understanding of landslide-conditioning parameters. In
this study, bivariate statistical method was used in conjunction with an iterative process of
expert consultation. Thirteen original landslide-conditioning parameters were narrowed down
to six, with the addition of a unique parameter, planar failure potential, which was selected
based on expert input. The parameter captures planar failure landslides, which has the highest
impact in the study area, causing loss of lives and property destruction. The inaugural landslide
susceptibility map for the study area has five classes; very low, low, moderate, high and very
high susceptibility. All major planar failures and most smaller circular failures fall within the very
high susceptibility class, with a success rate of 75.8%. The approach used in this study has
improved the quality of the landslide inventory and delineated key conditioning parameters.
The resultant map captures local conditions, which is useful for landslide management.

Keywords: bivariate statistics, expert consultation, landslide-conditioning parameter, landslide susceptibility,
geographic information system, Malaysia

1 INTRODUCTION

Landslides are common in areas with rugged topography and while their occurrence cannot be
prevented they can be mitigated to lessen the impact on society (Crozier, 1986). Aspects that
influence landslide occurrence include geological features such as rock-type, structure, soil type and
weathering depth as well as other factors such as slope gradient, ground saturation and land cover,
among others. Landslide susceptibility essentially refers to the potential for failures to occur in a
given area based on surficial and subsurface conditions and processes. Landslide susceptibility
modeling is based on the premise that past events leave recognizable morphological features that can
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be identified and mapped through field observation or remote
sensing (Rib and Liang, 1978; Varnes, 1978; Hansen, 1984;
Hutchinson, 1988; Dikau et al., 1996). Such incidents are
controlled by physical principles that can be quantitatively
analyzed. Both past and present landslides provide valuable
information on conditions of failure to anticipate future areas
of occurrences. Landslide susceptibility modeling results in maps
that can be used for land use planning and reducing the risk of
infrastructure and communities to landslides.

Landslide susceptibility models delineate areas where landslides
are likely to occur based on local geological, geomorphological and
other physical conditions. Landslide susceptibility models can be
developed using qualitative or quantitative techniques. Quantitative
susceptibilitymodeling is conducted using deterministic (analytically
driven), heuristic (knowledge-driven) or data-driven statistical
bivariate, multivariate and machine learning approaches
(collectively referred to as statistical approaches in this paper).
The deterministic approach is best suited for terrain with similar
landslide types, geological setting and geomorphological conditions;
thus have limited use for susceptibility modeling over larger areas
(Soeters and van Westen, 1996). The heuristic approach is semi-
quantitative, relying on ranking and weighting of known instability
factors based on their importance in causing landslides, using expert
knowledge. This approach is subject to misconception, landform
misinterpretation and uncertainty for those unfamiliar with the area
under investigation (Reichenbach et al., 2018). Bivariate or
multivariate approaches involve linear correlation analysis
between landslide events and conditioning factors. Machine
learning approaches address non-linear correlation analysis
between the events and factors. There has been much
advancement in remote sensing technology, Geographical
Information System (GIS) and computing capability since the
1990s. It has made landslide susceptibility modeling using
statistical approaches more efficient and inexpensive. High-
resolution maps covering large tracts of areas that were
previously inaccessible can now be easily produced.

A landmark review of landslide susceptibility modeling based on
statistical approaches revealed that the parameters used over the past
four decades have remained similar but the significance of its
selection with respect to ground conditions and understanding of
landslide processes is poorly justified (Reichenbach et al., 2018). In
some cases, landslide susceptibility modeling using bivariate
statistical methods have yielded better results compared to
multivariate approaches. Bivariate statistical approaches are also
very reliable when combined with expert inputs (van Westen
et al., 2003). Machine learning techniques have proliferated
recently but its use in landslide susceptibility modeling is limited
(Merghadi et al., 2020). It is due to shortcomings associated with
algorithm selection, poor quality of data in landslide inventories and
inadequate understanding of landslide-conditioning parameters.
Poor data quality and inadequate understanding are issues in all
statistical methods. While statistical approaches have become
increasingly sophisticated in the research domain, its use in
actual practice has also been questioned, particularly with respect
to its precision in reflecting the actual factors that cause a slope to fail
(Hearn and Hart, 2019). The importance of understanding the
terrain and landslide condition parameters to develop a reliable

inventory based on primary and secondary data from field
investigations was emphasized. This is supported by recent
findings which indicate that landslide inventories based on a
combination of high-resolution images and field information
provide better estimates of areas that are prone to shallow
landslides (Bordoni et al., 2020; Merghadi et al., 2020). A
comparative study revealed that machine learning models are
more accurate than general statistical approaches limited by its
linear analysis, and heuristic methods using subjective weights
(Huang et al., 2020). The single study uses the same landslide
inventory in developing the susceptibility models. While the
study is very sophisticated in its statistical approach, there was no
mention of the quality of the landslide inventory. The relationship
between contributing factors and landslide incidents was also not
elaborated. The landslide inventory for statistical approaches can
comprise about 50 to over 600 landslide events (Pradhan, 2011;
Abedini et al., 2019; Bordoni et al., 2020; Huang et al., 2020; Wu
et al., 2020).However, the number of events recorded does not reflect
the quality of the landslide inventory. The quality of the landslide
inventory is reflected by records from field observations on failure
characteristics and landslide-conditioning parameters.

A limited number of landslide susceptibility studies have been
conducted in Malaysia over the past decade, primarily using
statistical approaches (Pradhan, 2011; Sharir et al., 2017; Jeong
et al., 2018; Sameen et al., 2020). Areas covered include Cameron
Highlands, Penang Hill, Putrajaya and parts of Kuala Lumpur in
Peninsular Malaysia, as well as Kundasang, located in the state of
Sabah in East Malaysia (Pradhan, 2011; Sharir et al., 2017; Jeong
et al., 2018; Sameen et al., 2020). In Peninsular Malaysia, the rock
types are mainly granites and metamorphic rocks, and the soil
profile is thick. The dominant mode of failure is rotational slide,
while other modes include soil flow and shallow translational
slide (Pradhan, 2011; Sameen et al., 2020), with deep seated
landslides reported in the Kuala Lumpur area (Jeong et al., 2018).
The number of landslide-conditioning parameters vary; up to a
maximum of 12 factors have been used covering geological,
geomorphological and other aspects. In Sabah, landslide
density maps were developed to delineate susceptibility zones
using four conditioning parameters in the area: slope angle, slope
aspect, lithology and soil type. (Sharir et al., 2017). The landslide
density is high in natural slopes steeper than 35° and cut slopes of
25°–35° as well as soils derived from metasedimentary rocks.
Many of the studies in the country have reported model
performance in terms of fit and prediction capability. The
studies also noted that the quality of modeling is dependent
on the property and completeness of the inventory, particularly
with respect to the observed landslide-conditioning parameters as
well as their linkages (Pradhan, 2011; Sharir et al., 2017).

This paper focuses on landslide susceptibility modeling of
Canada Hill in Miri, Sarawak, which is part of East Malaysia in
north west Borneo Island. It is the first attempt to develop a
landslide susceptibility model for the area. The study combines
the statistical bivariate method with expert consultation to
develop a landslide susceptibility model for the area (van
Westen et al., 2003). The bivariate method is simple and
reliable for incorporating landslide-conditioning parameters,
while expert consultation provides insights on the significance
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of the parameters. This hybrid approach was taken to overcome
the limitation of statistical methods in reflecting the actual factors
that cause a slope to fail and ensure its usefulness in actual
practice (Reichenbach et al., 2018; Hearn and Hart, 2019). It also
facilitates the establishment of an inventory that could be further
developed to test more sophisticated statistical analysis to cover
larger tracts of area. The next section comprises a brief overview of
the study area with respect to the geology and landslide
characteristics. Subsequently, a brief account is provided on data
acquisition and the methods deployed. The results and discussion

are centered on the landslide-conditioning parameters, susceptibility
maps, model performance, and recommendations for future work,
followed by the final concluding section.

2 OVERVIEW OF THE STUDY AREA

Canada Hill is a narrow northeast-southwest trending ridge
located in Miri, Sarawak (Figure 1). The hill, which extends
up to 8 km is underlain primarily by the middle Miocene-

FIGURE 1 | Geological map and cross section of Canada Hill in Miri, Sarawak. Extension and thrust faults, and naming of Miocene geological units after Wannier
et al. (2011).
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Pliocene (∼10 Ma) Miri Formation, consisting of interbedded
deltaic sandstone and shale (Liechti et al., 1960). The lateMiocene
Seria Formation is in conformity with the Miri Formation and is
almost similar in lithology, comprising laminated thin sandstone,
sandy shale and shale with some lignite (Liechti et al., 1960). The
Pleistocene Terrace deposits comprise well sorted loose quarzitic
sands deposited in the near-shore environment, which were
uplifted to the present position by block faulting (Kessler and
Jong, 2014) (Figure 1). The flat plain adjacent to the hill consists
of Holocene marine deposits and peat. Canada Hill is part of the
faulted Miri Anticlinal structure, an open fold which extends to
the sea in a south-westward direction and plunges toward the
northeast (Wannier et al., 2011). The strata of the north-western
limb of the anticline mainly dip north-westerly between 20° and
30°, while those on the south-eastern limb dips south-easterly
between 30° and 60°. The strata are cut by numerous faults and
joints.

A total of 62 landslides were recorded in Canada Hill comprise
dominantly shallow rotational failures followed by planar failures
and toppling failures. Two major landslides (LS1 and LS2) that
occurred in 2009 have caused significant damage to properties
and two fatalities. The slip surfaces of these two landslides are
along the sandstone-shale beds with an average slope gradient of
about 25°. Landslide occurrences in Canada Hill are common
during prolonged periods of heavy rainfall during the north-east
monsoon, due to water seepage and surface water runoff (Banda
et al., 2009; Mohd, 2014).

3 MATERIALS AND METHODS

Data Acquisition
The study commenced with data acquisition from a variety of
sources (Figure 2). A base map of Canada Hill was prepared
using topographic maps, Shuttle Radar Topography Mission
(SRTM) data, satellite imageries and geological maps by
Wannier et al. (2011). The 1 arc-second SRTM was
obtained from a public domain run by USGS (https://
earthexplorer.usgs.gov/) while the topographic map of 1 m
elevation intervals was obtained from the Department of
Mineral and Geoscience Malaysia. The topographic map
was derived from erial LiDAR data acquired by the
Malaysian Public Works Department for the landslide
investigation of Canada Hill by the Department of Mineral
and Geoscience Malaysia (Mohd, 2014). A digital elevation
model (DEM) with a 1 m cell size was generated. The DEM was
overlain with satellite imageries from Google Earth to aid in
the base map digitization, identification of spatial locations of
past landslides and field investigation. The resultant maps
were converted into geotiff files and uploaded into “Avenza
Maps”, a mobile application utilized for verification and
updating geological and landslide information in the field.

The landslide inventory was developed from field mapping
and observations, interpretation of satellite imageries and DEM,
and historical records from the Minerals and Geoscience
Department of Malaysia and the newspapers. The tropical
climate in Malaysia promotes rapid erosion and overgrowth of

vegetation that easily wipes out evidence of slope movements
within a few years. Thus, sequential Google Earth images ranging
from 5 to 7 years over 14 years were interpreted and compared to
obtain the best sense of slope movement, changes of land use and
other human activities (vanWesten et al., 1997). Field verification
was conducted in cases where past minor shallow failures were
difficult to demarcate accurately on the map.

Landslide-Conditioning Parameters
Thirteen landslide-conditioning parameter maps were initially
created for the susceptibility analysis. They are: geology and
geomorphology; distance to lineament; planar failure potential;
distance to drainage; normalized differentiated vegetation index
(NDVI); annual rainfall; slope gradient; elevation; slope aspect;
slope curvature; topographic wetness index (TWI); surface
roughness; and flow accumulation. The last seven are primary
and secondary geomorphometric parameters derived from
the DEM.

The geological map was produced primarily from field
investigations and information from Wannier et al. (2011).
Geomorphology was obtained from field observations and
interpretation of shaded relief maps derived from the DEM.
The geomorphology of the study area is closely related to the
geology and it can be divided into five classes: Miri Formation;
Seria Formation; Terrace Deposits, Holocene Deposits and Fill
Material. The Miri Formation mainly occupies the severely
eroded and deeply incised slopes of Canada Hill. The terrain
is consisting of narrow V-shaped valleys and narrow ridges. The
relief is between 10 and 50 m. The Seria Formation forms low
elongated hills with relief of between 5 and 15 m. Soils from Miri
and Seria formations comprise of highly erodible sand and clay
with low plasticity (Muol, 2009). The Terrace deposits are 1–3 m
thick and occupy the flat top and the gentle flanks of the plateau-
like Canada Hill. The Holocene deposits are comprising of
marine clay and organic soils of the coastal plain, peat
occupying coastal swamps and beach sand along the coast.
The estuary of the Miri River has been reclaimed using
undifferentiated fill materials.

Major joints and faults present around the hill form prominent
negative lineaments observed in the shaded relief maps and
satellite imageries. In addition, several major thrust and
normal faults have been interpreted from subsurface
exploration data (Wannier et al., 2011). The faults can
introduce tectonic stress and cause shearing of the bedrock.
The joints and faults are pathway for the ingress of water and
caused increased weathering intensity. The distance to lineament
classes are more than 250 m; 150 m–250 m; 75 m–150 m;
25 m–75 m; and less than 25 m.

Slope gradient is considered a very important parameter in
landslide susceptibility assessment (Reichenbach et al., 2018) and
was used in this study to understand the morphological character,
rate of soil erosion and mass wasting. The slope gradient
parameter was derived from DEM and divided into six classes:
0°–5°; 5°–15°; 15°–25°; 25°–35°; 35°–60° and 60°–90°.

The effects of elevation on the landslide occurrences depend
on the lithological character of the units. Higher elevations may
promote the development of first order streams, resulting in slope
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steepening (Mandal and Mandal, 2017). The elevation of the
study area was derived from the DEM and divided into five
classes; 0 m–5 m; 5 m–25 m; 25 m–50 m; 50 m–75 m; and more
than 75 m.

Convex and concave slopes have different responses to stability
based on theirmoisture retention capabilities. The surface of concave
slopes can retain moisture for a long time and may become a
catchment for sediments to accumulate from overland flow.
Meanwhile, on convex slopes, moistures are drained out
immediately and transporting along sediments. This makes
convex slopes more prone to landslide occurrences. The slope

curvature parameter was derived from the DEM and divided into
three classes: flat; convex; and concave.

The slope aspect may be used to identify slope segments that
are most susceptible to landslides due to exposure to sunlight,
drying winds, rainfall and discontinuities (Yalcin et al., 2011). The
visual representation of slope aspect in a map also enables the
representation of the direction of flow based on the orientation of
ridges, spurs and valleys which in turn, can delineate places of
potential water surplus region (Mandal and Mandal, 2017).
Canada Hill exhibits a relatively simple anticline structure, as
shown by the orientation of bedding which mainly strikes parallel

FIGURE 2 | Flow chart of the landslide susceptibility modeling using a hybrid approach, where expert opinion was used for the selection of landslide-conditioning
parameters for bivariate statistical analysis.
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to the trend of the hill. This can be used to indicate the influence
of geological structure to landslide occurrences. The slope aspect
was derived from the DEM and divided into nine classes; flat;
North; Northeast; East; Southeast; South; Southwest; West; and
Northwest.

The surface roughness was obtained from the standard
deviation of elevation calculated using focal statistics over a 15
cell by 15 cell moving window (LaHusen et al., 2016). It is
assumed that areas affected by landslides have a different
roughness signature. The TWI is used to indicate ground
moisture and areas accumulating water flow. It was calculated
from the equation: ln (A/tanβ), where A is the upslope
contributing area and tanβ is the local slope (Moore et al.,
1991; Sørensen et al., 2006). The flow accumulation calculates
the cumulative number of upslope cells that drain into it. It is
often used to identify areas of concentrated flow, such as drainage
channels.

Drainage was obtained from the topographic map. Buffer
distances of 0–25 m, 25–50 m, 50–100 m, 100–250 m and more
than 250 mwere used. The NDVI was calculated from the red and
near infrared bands of Landsat-8 imagery. The NDVI is divided
into water, barren, sparsely vegetated, moderately vegetated and
densely vegetated areas using break values selected by comparing
the land cover and vegetation density of the classified area in the
true color imagery.

Planar failure potential is a parameter that is used to assess the
kinematic possibility of sliding. The parameter can be determined
for the study area because the geological structure is simple,
where dip and dip directions can be interpolated from discrete
bedding points using circular statistics. The method from de
Kemp (1998) was used to extract the direction cosines of the
bedding data. The dip direction and dip angle maps were created
separately. The first step involves calculating the angle between
the slope aspect and dip direction of the bedding. The second step
is to determine the angle between the slope gradient, dip angle of
the bedding and friction angle. Based on observations of past
planar failures, a friction angle of 25° is assumed and the angles
between 15° and 25° are considered marginal. The bedding plane
that strikes within 0°–30° to the slope face is considered the most
vulnerable. This parameter is divided into five classes of in
relation to potential instability caused by bedding controlled
planar failure; very high, high, moderate, low and very low.

Average annual rainfall was calculated from daily rainfall data
from five rainfall stations near the study area for the period
between 2007 and 2016. The average annual rainfall of the five
stations was used to interpolate the rainfall for the entire study
area using the kriging method.

Bivariate Statistical Method
The bivariate statistical method is based on the analysis of the
functional statistical relationship between landslide-conditioning
parameters and the known distribution of landslides (Carrara,
1983; Naranjo et al., 1994; Guzzetti et al., 1999; van Westen et al.,
2003; Reichenbach et al., 2018). The tendency of an area to
experience landslide is determined from the functional
relationship, where weights are calculated for each parameter
from the landslide density.

The importance of each landslide-conditioning parameter is
analyzed individually by comparing the map of the parameter
with the landslide distribution map. Landslide densities were
calculated using the equation of van Westen (1993) for each
parameter map to obtain the weight (Eq. 1). The densities are
equivalent to the number of landslides over the area occupied by
the parameter.

Wi � ln(Densclass
Densmap

) � ln
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Npix(Si)

Npix(Ni)∑
Npix(Si)∑
Npix(Ni)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

where.

Wi � weight of a certain parameter class (e.g., a rock type, or a
slope class)
Densclass � landslide density within the parameter class
Densmap � landslide density within the entire map
Npix (Si) � number of pixels, which contain landslides, in
certain parameter classes
Npix (Ni) � total number of pixels in a certain parameter class.

The analysis utilizes the pixel cells in a map and therefore
maps that were initially in vector format were converted into
rasters. The raster maps were then analyzed to obtain the number
of pixels and landslide density for each parameter class. Weight is
calculated from the landslide density within a class with the
landslide density of the whole area.

Negative weights would mean that landslide density is lower than
normal, positive weights if the landslide density is higher than
normal and zero weight if there are no landslide occurrences in a
certain parameter class or the class may or may not contribute to
landslide occurrences (van Westen, 1997). However, certain
subclasses that do not contain any landslide occurrences would
return a “no pixel data” or 0Npix (Si) value for certain subclasses due
to the absence of landslide occurrences. This problem leads to errors
in calculation for the weights as the incorporation of 0 Npix (Si)
value in the equation would approach infinitesimal. Therefore, an
initiative to quantitatively assign a relatively lower value than the
weight was done although this would not exactly show the
information value of the area (Oliveira et al., 2015). The weights
were then used to reclassify the chosen landslide-controlling
parameters to be used in the overlay analysis for the generation
of landslide susceptibility map.

The final landslide susceptibility map is a summation of the
reclassified parameter maps. The resultant map yielded a
continuous value and was normalized for subsequent
reclassification into five classes to denote areas of very low,
low, moderate, high and very high susceptibility to landslide
occurrences. The susceptibility classes were obtained through
manual classification adapted from Australian Geomechanics
Society (AGS), 2007 and Fell et al. (2008). In this
classification, the very high susceptibility class contains more
than 50% of the landslide pixels, high susceptibility 25%–50%,
moderate susceptibility 12.5%–25%, low susceptibility
6.25%–12.5% and the very low susceptibility 0%–6.25% of the
landslide pixels.
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Expert Consultation
An iterative expert consultation process was instituted to enable
peer review and provision of inputs to the study. The process is
also a means of controlling the quality of data in the landslide
inventory. Inputs were obtained in the development of the
landslide inventory, identification and screening of landslide-
conditioning processes and review of the bivariate statistical
results (Figure 2). The international panel of experts
comprised practitioners from the private sector and
government as well as researchers, with at least two years of
experience working on landslides in tropical terrain. Several had
intimate knowledge of the geology, geomorphology and slope
failures in the study area. Initially, a menu of landslide-
conditioning parameters was presented to seek opinions in
terms of their suitability for landslide susceptibility modeling
(Daniel and Ng, 2018). The menu was then modified where
parameters were selected, dropped or added based on the
experiential and local knowledge of the expert panel, as well as
results from the bivariate statistical analysis. Statistical analysis
generally does not utilize expert inputs and rely on objective
correlation of landslide occurrence with conditioning parameters.
The use of expert judgment is usually employed in the heuristic
analysis. The combination of the bivariate statistics method and
expert consultation in this study is referred to as a hybrid
approach.

Evaluation of Model Performance
The success rate of the landslide susceptibility maps produced
from the different approaches were calculated and compared by
means of a validation curve, also known as receiver operating
characteristic (ROC). The ROC-curve was plotted using the
obtained cumulative percentage of landslide occurrences
(y-axis) and the percentage of landslide susceptibility classes
arranged from the highest to the lowest values (x-axis). A
totally random prediction would yield a hypothetical
validation “curve” coinciding with a diagonal line from 0 to 1
and the position of the validation curve resulting from the
landslide data of a study area relative to the hypothetical

“curve” would determine the model’s predictive value and
capability (Remondo et al., 2003). The landslide susceptibility
classes were re-categorized into 10 classes from 0–100 with the
interval of 10 prior to calculating the area under the ROC curve
(Sameen et al., 2020).

4 RESULTS

Landslide Distribution
The landslide inventory of Canada Hill currently consists of 62
landslides. These include 52 rotational, five translational, three
planar and two toppling failures. Thirteen initial landslide-
conditioning parameters were screened by experts for landslide
susceptibility modeling (Figure 2).

In the first iteration with the experts, seven parameters were
considered unsuitable for the study area and omitted from the
assessment. These are surface roughness, flow accumulation,
distance to drainage, TWI, NDVI, annual rainfall and planar
failure potential (Table 1). Of the unsuitable parameters, surface
roughness, distance from drainage and TWI show poor
correlation with landslides. The NDVI is not reliable when
calculated from an imagery because it does not reflect the
vegetation density during the actual landslide event. The date
of most landslide occurrences in not known and Canada Hill
experiences fluctuations in vegetation density due to forest fires
and modification of land use, making NDVI an unsuitable
parameter. Rainfall that is more of a triggering factor than a
predisposing factor and flow accumulation, which is more
suitable for debris flow are both omitted. Planar failure
potential was also not considered in the first iteration because
it is a subjective parameter derived from the combination of slope
aspect, slope gradient and bedding orientation.

The first iteration with experts led to the selection of six
parameters for the modeling (Figure 3). These are geology and
geomorphology, distance to lineament, slope gradient,
elevation, slope curvature and slope aspect (Table 2). The
majority of the landslides occur in the Miri Formation. The

TABLE 1 | An overview of landslide-conditioning parameters used in the study. The expert consultation process resulted in 6 parameters being omitted and replacement of
slope aspect with planar failure potential.

Parameters Status Remarks

Geology and geomorphology √ Detailed investigation required to determine their characteristics and distribution
Distance to lineament √ Relates to weakening and weathering of the rocks
Planar failure potential* √ Determination of kinematic potential of bedding-controlled planar failure from bedding orientation, slope aspect

and gradient, as well as friction angle. Included after expert input
Slope gradient √ A very important parameter used in all landslide susceptibility analysis
Elevation √ Relates to development of first order streams, resulting in slope steepening
Slope aspect √ Used to relate the influence of geological structure to landslide occurrences. Replaced with planar failure potential
Slope curvature √ Relates to the moisture retention capabilities of a slope
Surface roughness X The roughness of land surface has been modified by excavation in some areas
Flow accumulation X It more suitable for debris flow and not all types of landslide
Distance to drainage X Realignment of rivers and creation of new drainage by human activity is common in the area
Topographic wetness index (TWI) X Used to quantify topographic control on hydrological processes.
Normalized differentiated vegetation index
(NDVI)

X Timing of landslide events unknown, thus NDVI cannot be reliably obtained from imagery of any specific time

Annual rainfall X It is more of a triggering factor
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remaining occur in the terrace deposit. Generally, there is an
increase in landslide occurrences with decreasing distance to
lineament. Slopes with an angle of 15°–25° recorded the highest
number of landslides (35.5%), followed by 25°–35° slopes
(24.2%) and 35°–60° slopes (22.6%). No landslide was
recorded in the steepest slopes (60–90°) probably because
these slopes occupy only a very small areal extent of 0.03%.
There is a general increase of landslides with increasing
elevation. The highest occurrence of landslides (56.4%) falls
in the elevation class of 50 m–75 m. Only 12.9% of landslides fall
in areas above 75 m, probably due to its smaller areal extent and
the presence of relatively flat plateau at the top of the Canada
Hill. Approximately 64.5% of the landslides in the study area
occur in convex slopes while 35.5% are in the concave slopes.
With respect to slope aspect, landslide occurrences are common
in the slopes facing E, SW,W, and NW, with the highest number

of occurrences recorded in NW slopes (19.4%). As the landslide
distribution did not record major planar failures that caused loss
of lives in either the high or very high classes of susceptibility,
the parameters selected were reappraised.

The second iteration with experts led to the substitution of
slope aspect with planar failure potential in order to improve the
susceptibility map for planar failures. Most of the landslides at
Canada Hill occurred in the area of very low in terms of planar
failure potential, which accounts for 40.3% of the landslide
occurrence while the high and very high potential area
accounts for 16.1% (Table 2). A probable explanation for this
number is that most of the landslides recorded in the inventory
are shallow minor landslides that failed rotationally as opposed to
having a planar failure mechanism. Major landslides LS1 and LS2
fell in the very high potential area, indicating that this parameter
can enhance the landslide susceptibility assessment by capturing

FIGURE 3 | Landslide-conditioning parameter maps. (A) Geology and geomorphology (B) distance to lineament (C) slope gradient (D) elevation (E) slope
curvature, and (F) slope aspect.
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the infrequent but extensive planar failures occurring in the
study area.

Landslide Susceptibility
The landslide susceptibility map is shown in Figure 4. Areas with
very high and high susceptibility are mainly located on the upper
slopes of Canada Hill, immediately below the flat plateau. The
high susceptibility areas also occur below the ridges at the mid-
slopes. These areas underlain by Miri Formation are deeply
incised by erosion. The moderately susceptible areas mainly
occur in the lower slopes. Areas with low susceptibility
include the foot slopes of Canada Hill and low hills underlain
by Seria Formation, while the very low susceptibility areas are the
coastal plain covered by Holocene deposits, the flat to gently
sloping areas underlain by the Terrace deposits and Seria
Formation.

The landslide susceptibility assessment using the bivariate
statistical approach utilized the weights in Table 2. The first
iteration of the bivariate analysis resulted in a landslide
susceptibility map (Figure 4) that shows very satisfactory
agreement to landslide occurrences. The success rate is 80.8%
(Figure 5). However, the map failed to place a major planar
landslide (LS2) in the high or very high susceptibility zone. The
major landslide LSI falls within the high susceptibility zone. The
scarcity of data in the inventory, especially on planar failures
impaired the integration of the planar failures in the susceptibility
map. The second bivariate statistical analysis was carried out to
refine the process by replacing the slope aspect with planar failure
potential parameter (Figure 6) in the assessment based on expert
consultation. The landslide susceptibility map was produced
using the same weights as shown in Table 2. The landslide
susceptibility map produced in the second iteration (Figure 7)

TABLE 2 | The weights and the relationship between landslide-controlling parameters and landslide distribution using the bivariate statistical approach. Only the first six
parameters were used in the first analysis. In the second analysis slope aspect was replaced with planar failure potential.

Landslide-conditioning Class Landslide Class count LS Weight

Parameter No % Pixel % Density (km−2)

(1) geology and geomorphology Fill material 0 0.00 142,589 0.83 0.00 0
Holocene deposits 0 0.00 12,528,329 72.75 0.00 0
Terrace deposits 2 3.23 542,039 3.15 3.69 2
Seria formation 0 0.00 424,700 2.47 0.00 0
Miri formation 60 96.77 3,171,898 18.42 18.92 166
Water body 0 0.00 411,979 2.39 0.00 0

(2) distance to lineament (m) <25 22 35.48 2,120,302 12.31 10.38 106
25–75 31 50.00 3,228,133 18.74 9.60 98
75–150 9 14.52 2,699,911 15.68 3.33 −8
150–250 0 0.00 1,944,255 11.29 0.00 0
>250 0 0.00 7,228,933 41.98 0.00 0

(3) slope gradient (°) 0–5 0 0.00 13,799,323 80.13 0.00 0
5–15 11 17.74 1,406,292 8.17 7.82 78
15–25 22 35.48 1,033,156 6.00 21.29 178
25–35 15 24.19 651,266 3.78 23.03 186
35–60 14 22.58 326,035 1.89 42.94 248
60–90 0 0.00 5,462 0.03 0.00 0

(4) elevation (m) 0–5 0 0.00 12,254,336 71.16 0.00 0
5–25 4 6.45 2,085,528 12.11 1.92 −63
25–50 15 24.19 1,865,807 10.83 8.04 80
50–75 35 56.45 693,227 4.03 50.49 264
>75 8 12.90 322,636 1.87 24.80 193

(5) slope curvature Flat 0 0.00 13,373,834 77.66 0.00 0
Concave 22 35.48 1,848,221 10.73 11.90 120
Convex 40 64.52 1,999,479 11.61 20.01 172

(6) slope aspect Flat 0 0.00 13,389,750 1.78 0.00 0
N 3 4.84 574,296 3.33 5.22 37
NE 5 8.06 428,651 2.49 11.66 118
E 11 17.74 375,233 2.18 29.32 210
SE 5 8.06 440,783 2.56 11.34 115
S 7 11.29 411,659 2.39 17.00 155
SW 10 16.13 372,696 2.16 26.83 201
W 9 14.52 484,553 2.81 18.57 164
NW 12 19.35 743,913 4.32 16.13 150

(7) planar failure potential Very low 25 40.32 14,497,183 84.19 1.72 −74
Low 15 24.19 774,872 4.50 19.36 168

Moderate 12 19.35 829,536 4.82 14.47 139
High 6 9.68 936,832 5.44 6.40 58

Very high 4 6.45 180,836 1.05 22.12 182
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captured both major planar failure occurrences in the very high
susceptibility zone. The success rate of the revised map is within
the very satisfactory range although there is an overall reduction
to 75.8% (Figure 5). The inclusion of the planar failure potential
parameter originated from the expert consultation. The
introduction of this element in a structured way to the
bivariate statistical model, appears to have strengthened this
approach by incorporating vital local knowledge.

5 DISCUSSION

The reliability and completeness of a landslide susceptibility
map depends on the quality of the input parameters used in the
landslide susceptibility assessment, the degree of experience of

the person and the complexity of the study area geologically
(Magliulo et al., 2009). The initial inventory of landslides for
Canada Hill was developed from DEM, satellite images,
previous literature and recent field investigation. Landslide
inventories are of better quality based on a combination of
high-resolution images and thorough field information
(Bordoni et al., 2020; Merghadi et al., 2020). During the
expert consultation, the quality of the landslide inventory
was found to be deficient. This was primarily due to the
difficulties in identifying relict shallow landslides and areas
that were difficult to access during the fieldwork as well as
insufficient high-quality erial photos from previous decades. It
was highlighted that fast growing thick vegetation in tropical
terrain rapidly mask failures in this region. This requires data
to be continuously collected immediately after an event. The

FIGURE 4 | Landslide susceptibility map of Canada Hill produced from six parameters; geology and geomorphology, distance to lineament, slope gradient,
elevation, slope curvature, and slope aspect.
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availability of unpublished field records provided by experts
with extensive experience in the study area provided
additional information to improve the quality of the
landslide inventory.

The selection of landslide-conditioning parameters with respect
to the geology, geomorphology and ground conditions have to be
carefully understood and justified (Reichenbach et al., 2018). The
understanding of the process that induce landslide occurrences gives
an idea of landscape evolution, with regards of whether it being
site-specific or homogenous across different areas. The
understanding of the parameters was enhanced in the hybrid
approach. The expert consultation enabled the delineation of
bedding controlled planar failure, which occurs in the area. This
mode of failure is generally confined to this particular geological
setting, and is not commonly mentioned in the literature. The
analysis of planar failure is normally conducted in detailed scale
at specific sites. The expert consultation contributed to the
extrapolation of the bedding orientation from specific location
points to the entire study area. This enabled the planar failure
potential to be assessed as a landslide-conditioning parameter that is
unique to the area in the bivariate statistical method.

The iterative process of expert consultation has resulted in a
susceptibility map that captured major planar failures in the very
high susceptibility class. The initial susceptibility map that was
generated using the bivariate statistical method without the input
of this local information did not record the major planar failures in
the very high susceptibility class. This confirms previous findings
that bivariate statistical methods are very reliable when combined
with expert inputs (van Westen et al., 2003). It may be argued that
planar failure potential is a subjective landslide-conditioning
parameter that cannot be replicated because it originated from
expert input. However, the process of combining expert
consultation when deploying the bivariate statistical method can
be easily replicated. The process of instituting expert consultation to
provide local knowledge of an area will be the same, though the

nature of the final parameters used will differ based on local
geological and geomorphological conditions. If the method is
replicated in another area, the set of parameters used to create
the susceptibility map may not be the same as those used in the
present study. Nevertheless, the process of consultation enables
better selection of landslide-conditioning parameters that
represent the real field situation. The resultant landslide
susceptibility map would then be relevant for actual practice.

A landslide inventory for statistical approaches may comprise
nearly 600 events (Pradhan, 2011; Abedini et al., 2019; Bordoni
et al., 2020; Huang et al., 2020; Wu et al., 2020). However, the
quality of the data-set is more important than the number of
events in the record. All studies should mention limitations of the
landslide inventory and provide field information on actual
contributing factors that cause a slope to fail. Furthermore, the
applicability of the work in practice is also important. In using the
hybrid approach, the expert consultation in this study comprised
practitioners from the private sector and government as well as
researchers. This provided additional experiential knowledge
while at the same time securing the buy-in of practitioners on
the use of the findings for landslide management. Thus, the
composition of the expert panel is also important, to enhance the
use of the findings beyond the study.

Many investigations have assessed model performance in
terms of fit and prediction capability but very few have
reported on uncertainties; these are primarily in multi-
criteria statistical approaches (Reichenbach et al., 2018). It
has been recommended model fit and prediction
performances be complemented with uncertainty analysis
to improve landslide susceptibility assessment. The
bivariate method in this paper used receiver operating
characteristic (ROC) to test the model performance, which
is common in landslide susceptibility modeling. The aspect on
uncertainty will be considered for future work in the
study area.

FIGURE 5 | Plot of cumulative percentage of landslide occurrences vs. percentage of landslide susceptibility classes. The success rate is calculated as the area
under the curve. Analysis 1 was calculated from the six initial parameters (geology and geomorphology, distance to lineament, slope gradient, elevation, slope curvature,
and slope aspect) and in analysis 2, slope aspect was replaced with planar failure potential.
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6 CONCLUSION

Landslide susceptibility assessment was conducted in Canada
Hill, Sarawak, Malaysia using a hybrid approach. The approach
involved combining bivariate statistics with an iterative process
of expert consultation. Thirteen landslide-conditioning
parameters were narrowed down to six with an additional
unique parameter selected based on expert input. These are
geology and geomorphology, slope gradient, elevation, distance
to lineament, slope curvature and slope aspect as well as planar
failure potential. The use of bivariate statistics generated a
susceptibility map with five classes; very low, low, moderate,
high and very high. The initial map did not capture major
planar failures in the very high susceptibility class. The success

rate of the landslide susceptible model is 80.8%. The
replacement of slope aspect with the unique planar failure
potential based on expert consultation resulted in a map where
all major planar failures and most smaller circular failures fall
within the very high susceptibility class, with a success rate of
75.8%. Expert consultation has resulted in a map that captures
local conditions, which is more useful for landslide
management. The process of expert consultation also
enabled quality control during landslide inventory
development, enabling the capture of appropriate field
observations on failure characteristics and landslide-
conditioning parameters. The process of consultation has
enabled the selection of landslide-conditioning parameters
that is appropriate and representative of the field situation.

FIGURE 6 | Planar failure potential map of Canada Hill.
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The hybrid approach has potential for resulting in landslide
susceptibility map that is relevant for practice.
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