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Abstract: Landslide susceptibility modelling in tropical climates is hindered by incomplete inventory
due to rapid development and natural processes that obliterate field evidence, making validation a
challenge. Susceptibility modelling was conducted in Kuala Lumpur, Malaysia using a new spatial
partitioning technique for cross-validation. This involved a series of two alternating east-west linear
zones, where the first zone served as the training dataset and the second zone was the test dataset,
and vice versa. The results show that the susceptibility models have good compatibility with the
selected landslide conditioning factors and high predictive accuracy. The model with the highest
area under curve (AUC) values (SRC = 0.92, PRC = 0.90) was submitted to the City Council of Kuala
Lumpur for land use planning and development control. Rainfall-induced landslides are prominent
within the study area, especially during the monsoon period. An extreme rainfall event in December
2021 that triggered 122 landslides provided an opportunity to conduct retrospective validation of the
model; the high predictive capability (AUC of PRC = 0.93) was reaffirmed. The findings proved that
retrospective validation is vital for landslide susceptibility modelling, especially where the inventory
is not of the best quality. This is to encourage wider usage and acceptance among end users, especially
decision-makers in cities, to support disaster risk management in a changing climate.

Keywords: landslide susceptibility; validation; predictive capability; disaster risk; tropical cli-
mate; Malaysia

1. Introduction

Landslides triggered by rainfall have resulted in the highest number of fatalities in
Asia, and whilst its attribution to climate change is limited by deficient records, landslide
occurrence is expected to increase in many regions [1,2]. Development in steep hills and
unstable slopes, in combination with seasonally dry periods followed by excessive rainfall
are contributing factors for frequent landslides in Southeast Asia [3]. The number of people
in cities and urban settlements that will be exposed to landslides is expected to increase in
Southeast Asia due to increased monsoon rainfall as a result of climate change [1,4]. The
expected increase of landslides calls for reliable demarcation of areas susceptible to this
hazard for supporting disaster risk management in cities.

Quantitative techniques predominate in landslide susceptibility modelling. The
techniques could be deterministic (analytically driven), heuristic (knowledge-driven),
or data-driven statistics, encompassing bivariate, multivariate, and machine learning ap-
proaches [5,6]. The use of statistical approaches in actual practice is dependent on a reliable
inventory that reflects the actual factors that cause a slope to fail [7,8]. Statistical approaches
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are reliable for shallow landslides when drawing on inventories that integrate field investi-
gation, high resolution digital elevation models (DEM) and images, combined with expert
inputs for more nuanced representation of local conditions [9–12].

Validation is critical for susceptibility modelling to ensure the quality and reliability of
outputs for wider usage among the decision makers [13–15]. Model validation generally
involves two aspects, evaluating compatibility and assessing predictive capability [5,16,17].
The area under curve (AUC) is computed from the receiver operating characteristics (ROC)
curve to report results. The evaluation of compatibility (i.e., agreement between the outputs
and observed data) is from success rate curves (SRC) while the assessment of predictive
capability is through prediction rate curves (PRC). Partitioning of the inventory into test
and training datasets is the basis for validation [15,18].

Partitioning of the inventory is handled using three types of techniques. These are
random, spatial, and temporal techniques [13,14,19,20]. Temporal validation uses dataset
of landslides that occurred at different time periods to assess the predicted model capabil-
ity. Random partitioning involves separation of the landslide inventory into two subsets,
where one subset is arbitrarily removed to assess predictability. Spatial partitioning is a
comparison of two mutually exclusive sub-regions of the area under investigation, or to
another area with similar setting. This technique has limitations in lithologically hetero-
geneous areas, where some parameters that influence landslides may be absent in one of
the sub-regions, leading to low predictive capability [15,21]. Retrospective validation has
recently been introduced to assess the actual accuracy of prediction from susceptibility
modelling [18]. The application of this approach is expected to increase the reliability,
transparency, and acceptance of susceptibility modelling.

Malaysia has tropical climate with mean daily temperatures of between 26 ◦C to
28 ◦C and annual average rainfall ranging from 2000 mm to 4000 mm, with two distinct
monsoon seasons [22]. The hot and humid conditions have resulted in deep weathered
soil profiles that are prone to landslides. Rainfall-induced shallow landslides are common
in cities primarily due to land use change and other human activity, and several have
been observed to be reactivated failures [23–25]. In some cases, failures have been linked
to inadequate engineering design during construction and poor slope maintenance [23].
Landslide mapping is a challenge due to vegetation growth, active erosion, and rapid
development that obliterates evidence of landslide occurrence. This is compounded by
inadequate public records, which is a prevailing issue for many developing countries due
to limited resources [26].

Landslide susceptibility modelling has been conducted sporadically in Malaysia over
the past decade. Statistical approaches are prevalent in areas where inventories are available
such as Cameron Highlands, Penang, Putrajaya, and eastern Selangor [27–36]. Generally,
the inventories are limited, and the best available data are utilised. More recently, a bivariate
statistics approach combined with expert inputs was used to improve the susceptibility
model [9]. In many cases, model validation is not mentioned [28–30,32,33], while in others
only the success rates are reported [9,34]. Investigations that report on predictive capability
have relied on random partitioning and spatial correlation techniques [27,31,35,36]. All the
investigations have been conducted for academic purposes and retrospective validation
has not been reported.

Kuala Lumpur, the capital city of Malaysia, suffers from numerous slope failures
especially after a severe rainfall episode, where residential infrastructure and business
complexes are most affected [23]. Many of the incidents occur in cut and fill slopes, road
embankments, highways, and hill slope development projects [28,37,38]. The situation is
expected to worsen with climate change and continuous expansion of the city. This paper
highlights a new spatial partitioning technique for landslide susceptibility modelling that
was conducted in Kuala Lumpur, Malaysia. The technique is introduced for assessing the
predictive capability of landslides, to overcome the limitations associated with lithological
heterogeneity. The ensuing landslide susceptibility map was then formally submitted
to the City Council of Kuala Lumpur (DBKL) to support decision-making. An extreme
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rainfall event with a recorded precipitation of more than 250 mm occurred in December
2021 exceeding the monthly rainfall in over a day. The unusual phenomenon was caused
by the northeast monsoon flow factors and a low-pressure weather system which caused
continuous heavy rain over the west coast of peninsula regions besides the usually affected
central east coast and northern peninsula regions. The event caused massive flooding of
100-year return period and triggered 122 landslides in the city. This provided an oppor-
tunity to conduct retrospective validation to confirm the robustness of the partitioning
technique and increase confidence in the landslide susceptibility map.

2. Materials and Methods
2.1. Study Area

Kuala Lumpur covers an area of 243 km2 and is the most urbanised and densely
populated territory in Malaysia. The city is located in west-central Peninsular Malaysia, un-
derlain by a variety of rock types, geological structures and geomorphological features [39].
The Dinding Schist present in northeastern Kuala Lumpur consists of meta-volcanics and
quartz-mica schist (Figure 1). It is overlain by the Hawthornden Schist comprising mainly
of graphitic quartz-mica schist. The schistosity of these two rock units is trending approxi-
mately north-south. The northern and east-central area is underlain by the Kuala Lumpur
Limestone. The limestone is fully covered by alluvium, fill material, and mine tailing with
thickness up to 66 m. Kenny Hill Formation is mainly found in the southern and central
parts of the city. It comprises interbedded phyllite and quartzite, and the strata are mainly
trending north–south. All the above metasedimentary sequences were intruded by granite,
which is present mainly in the western and southeastern Kuala Lumpur. Soils developed
over the schists, Kenny Hill Formation, and granite average 13 m, 9 m, and 15 m thick,
respectively. The ground elevation obtained from the digital terrain model (DTM) of Kuala
Lumpur ranges from 9 m to 320 m; about 90% of the city is below 100 m. Flat alluvial plains
occur along the Kelang River and its tributaries. The alluvium has been largely mined for
tin in the past. The alluvial plain is flanked by hills at the east and west. The hills in the
Kenny Hill Formation areas have low relief (~50 m) and are generally elongated in the
north–south direction. The hills in the granite and schist areas have higher relief (~100 m)
and are also elongated in the north–south direction.

2.2. Input Data

The landslide inventory consists of 650 landslide points sourced from Department of
Mineral and Geoscience Malaysia (JMG). It is the sole official landslide repository that was
established in 2014 through field mapping and includes only rainfall-triggered landslides.
Although it contains only partial information on location and type of slope failure (man-
made or natural), the original landslide points were refined through quality assessment to
ensure the evidence of landslides location and its accuracy. The points were overlain on
the DTM, orthorectified aerial photographs and satellite imageries from Google Earth, and
repositioned at the crown of the landslides.

The DTM was derived from LiDAR data from DBKL. The 2014 LiDAR data have a
resolution of 1 m, and they were resampled to a pixel size of 5 m for the study. Aerial pho-
tographs were acquired from the Department of Survey and Mapping Malaysia (JUPEM)
and DBKL. Topographic maps used were at the scales of 1:50,000, 1:25,000 and 1:10,000
published by JUPEM. Bedrock geology maps obtained from JMG were updated to incorpo-
rate information on surface geology and geological structures. The additional data were
obtained from boreholes and field visits as well as interpretation from aerial photographs
and topographic maps.
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Figure 1. Geological map of the Kuala Lumpur area. The city of Kuala Lumpur is located within the
Selangor state, in central-west Peninsular Malaysia.

2.3. Landslide Conditioning Factors

A total of fourteen intrinsic landslide conditioning factors were prepared from the
geological maps, DTM, topographic maps, and satellite imageries. All the geoprocessing
was done using the software ArcGIS 10.5. Bedrock geology and surface geology were
extracted from the geological data. Geomorphological factors such as slope gradient, slope
aspect, and slope curvature were derived directly from the DTM. The standard deviation
of elevation calculated from a 10 m by 10 m moving window was used to derive the
surface roughness [40]. The topographical position index (TPI) [41,42] was calculated as the
difference between the elevation at a point and the mean elevation within a 250 m radius
circular moving window.

The topographic wetness index (TWI) is a contributing factor that affects the topog-
raphy and used to quantify the topographic control on hydrological processes, expressed
by Equation (1), whereas the stream power index (SPI) measures the erosive power of
water flow as defined by Equation (2). The value α is calculated by multiplying the flow
accumulation with the cell area. The distance to stream, distance to road and distance to
lineament maps were created by making multiple ring buffer around the streams, roads and
lineament, respectively. Landsat 8 imagery was used to produce the normalised difference
vegetation index (NDVI) map. The value can be calculated using Equation (3).

TWI = ln(
α

tan β
) (1)
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SPI = ln(α. tan β) (2)

where α is the local upslope contributing area, and β is the slope [43].

NDVI =
NIR − Red
NIR + Red

(3)

where NIR is the near-infrared band, and Red is the red band.
An expert consultation process was carried out to select the best landslide conditioning

factors for the area [9]. The conditioning factors went through an iterative selection and
elimination procedure by experts with experience working on landslides in tropical terrain.
The evaluation was based on redundancy and relevance of the factors to the local geological
and terrain conditions, as well as the initial results of bivariate statistical analysis. Only
seven of the original conditioning factors were selected as shown in Table 1. They are
surface geology, slope gradient, elevation, distance to lineament, distance to road, surface
roughness, and TPI (Figures 2 and 3).

Most of the ground is covered by surface geology and shows a strong influence
towards landslide initiation compared to bedrock geology, caused by the deep weathering
profile which generates thick residual soil over most area [44]. The residual soil of Kenny
Hill formation holds the highest weightage of 1.00 with 68.7% of total landslide, due to
the interlayering of metasedimentary rocks of variable strength and properties while the
granite represents 127 (20%) landslides with a weightage value of −0.18. Slope gradient is
usually regarded as the primary causative factor for the onset of slope failure associated to
shear strength of the material on slope [45]. The analysis of the parameter indicates that the
landslide density and weightage values increase with increasing slope gradient. Elevation
of the slope is not a conditioning factor by itself but affects the overall surface of the terrain
and topographic features which controls the vegetation distribution [31]. The highest
weightage is represented by the 100–150 m class with a value of 0.55 and has 10% of the
total landslides while 50–100 m class represents 68.8% of the total landslides with a lower
weightage of 0.49 due to the larger area. The correlation between distance to lineament
parameter and landslides is explained by weakened earth material by deformation along
faults. The structural stability of the surrounding area is reduced by induced regional
perturbations in the fracturing occurrence and enhanced weathering in the rocks [46].
The distance to lineament factor and landslide shows direct correlation with the highest
weightage (0.93) is within 0–250 m proximity. Slope which has closer proximity to roads
especially near cut and fill slope could affect the stability by increase of stress in its base and
accumulation of water from nearby slope [47,48]. The highest weightage of 0.18 produced
from the 25–50 m class interval representing 25% of total landslides while the majority of
landslides (47%) occurs within 0–25 m distance from a roadway yields a low weightage
of 0.02 due to larger class area. Surface roughness generally correlates to excavation,
surface erosion and the density of vegetation cover and could signify the type of land cover
of that particular area and has been classified into high, moderate and low values [46].
Half of the landslides (53%) are categorised as having moderate surface roughness with a
weightage of 0.07, however the highest weightage of 0.29 represented by slope with high
roughness due to smaller areal class. TPI gives an indication to where the landslide point is
located with reference to the topographical position or sometimes expressed as landscape
position [49,50]. The highest percentage and weightage of landslides is within the middle
slope with a value of 61.17% and 1.13, respectively, with the upper slope class having a
weightage of −0.01 with 15.08% of total landslides.
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Table 1. Landslide conditioning factors and their definition as used in the bivariate statistical analysis.

No. Landslide
Conditioning Factors Definition Source

1 Topographic Position
Index (TPI)

Relative slope position or landform
category based on relative

relief values
DTM

2 Slope Gradient Degree of inclination of the slope DTM

3 Distance to Lineament Distance to fault and lineament
in metres DTM, air photo

4 Distance to Road Distance to major roads in metres DBKL road map

5 Surface Geology Recent material deposit
on the ground

Topographic map,
geological map, air
photo and borehole

6 Elevation Height above sea level DTM

7 Surface Roughness Degree of variation of
surface elevation DTMAppl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 18 

 

 
Figure 2. Seven landslide conditioning factors were selected according to the steps highlighted in 
the flow chart (a). The factors are surface geology (b), slope gradient (c), and elevation (d). 

Figure 2. Seven landslide conditioning factors were selected according to the steps highlighted in the
flow chart (a). The factors are surface geology (b), slope gradient (c), and elevation (d).
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2.4. Bivariate Statistical Analysis

Landslide susceptibility modelling was conducted using the bivariate statistical approach
that relies on the correlation between landslide population and the landslide conditioning
factors. Each conditioning factor is subdivided into several classes, and a weight is calculated
for each class from its statistical spatial relationship with landslide distribution [5,12,51,52].

The method proposed by [53] involves calculation of the natural logarithm of landslide
density of each class within each factor divided by the overall landslide density in the area
expressed as the Equation (4).

Wi = ln
(

Densclass
Densmap

)
= ln

 Npix(Si)
Npix(Ni)

∑ Npix(Si)
∑ Npix(Ni)

 (4)

where, Wi = the weight given to a certain factor class. Densclass = the landslide den-
sity within the factor class. Densmap = the landslide density within the entire map.
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Npix(Si) = the number of pixels with landslide occurrence in a certain factor class.
Npix(Ni) = total number of pixels in a certain factor class.

The weight indicates the correlation of the class factor with the landslide occurrence
and refers to landslide density of each factor class. Negative weights indicate that the
landslide density is lower than average, while a positive value signifies that it is higher.
A zero weight is obtained when there is an absence of landslide occurrences within a
parameter class [53]. Since the analysis is based on statistical calculation of the pixels in
a map, raster maps are required for the processing. Vector maps in the form of polygon
shapefiles were converted into raster files for further processing.

The raster factor maps were reclassified by assigning the weight to all the factor classes.
The landslide susceptibility is a summation of the reclassified factor maps. The susceptibility
classes can be defined based on the landslide density [54,55]. The classification was carried
out manually based on the percentage of landslide points within each class. The classes
are very high (>50%), high (20–50%), moderate (10–20%), low (2–10%) and very low (<2%)
susceptibility, respectively.

2.5. Model Evaluation and Validation

The study employed the ROC method for model evaluation and validation. The AUC
is used as the metric to evaluate the quality of the model. The susceptibility map was
divided into 25 equal area classes with decreasing susceptibility and the percentage of
landslide in each of class is calculated. The cumulative landslide percentage was plotted
against the cumulative area to derive the ROC curve.

The landslide inventory was partitioned into two groups, i.e., training dataset and test
dataset. The SRC is acquired when ROC curve of the same susceptibility map is plotted
against the training set. The PRC is generated from the ROC curve derived from the
susceptibility map generated from the training set against landslide points in the test set.
The performance of the model is represented by a value range under the curve of 0.5 to
1.0, where 0.5 represents a test with accuracy no better than chance while value close to 1.0
which suggests an ideal model with a perfect fit [19].

The whole 2014 landslide inventory was used to generate a landslide susceptibility
map and the SRC is plotted to assess the model’s compatibility. Spatial cross-validation
was done on the same inventory. The study area was partitioned into alternating linear
zones (zone A and zone B) measuring 1 km in width as to represent the smallest geological
unit in Kuala Lumpur known as schist. Another reason for the selection of the dimension is
to ensure consistency since the topographic map of Malaysia has a 1 km grid. The zones are
orientated east–west, perpendicular to the north-south geological and geomorphological
trend. This is to ensure the inclusivity of the factors involved in both sub-regions. The
validation was done twice. First zone A was used as the training set and zone B as the test
set, and in second validation, the role of zones A and B is reversed. The SRC and PRC were
plotted for both cases.

2.6. Retrospective Validation

In December 2021, an extreme rainfall event occurred in Kuala Lumpur and its sur-
rounding areas causing massive flood events. The event also triggered widespread land-
slides. Fieldwork was carried out in January 2022 to record the landslides. The research
team mapped 122 landslides more precisely than the older events in the original inventory.
The position of the landslides was recorded directly in the field using the application
Avenza Maps, where the DTM used as the base map. Retrospective validation was con-
ducted using a quantitative approach. The susceptibility maps and the landslide points
were compared by calculating the AUC values of PRC to evaluate the performance of the
landslide susceptibility maps that was generated from the original inventory.



Appl. Sci. 2023, 13, 768 9 of 16

3. Results
3.1. Landslide Inventories

The 2014 landslide inventory comprising 650 events is represented mainly by small
rotational landslides that occurred in the Kuala Lumpur granite and rotational to trans-
lational failures observed in the Kenny Hill formation. The mechanism of the landslides
is recognised as similar as they often occur together and caused sliding of material, but
data for each location are not available in the inventory. The landslides within the area
are rainfall-induced which occurred on both natural and man-made slope. About 70% of
the landslide are less than 10 m in length, 27% between 10 m and 20 m, and only 3% are
more than 20 m. The landslides occurred mainly in areas under the Kenny Hill Formation
(70%) and granite (20%). Landslides are common in the hilly areas on slope with gradient
of 15–25◦ (35%) and 25–35◦ (31%), in the west-central, south, and northeast Kuala Lumpur.
The distribution of the 2021 landslides is similar, but there is a noticeable increase of land-
slides in granite (31%). Spatially partitioning the 2014 inventory for model validation
revealed that 58% of landslides occurred in the first subset (zone A) while the remaining
42% were in the second subset (zone B).

3.2. Landslide Susceptibility Models

Three landslide susceptibility models were produced from bivariate statistical analysis
using 7 landslide conditioning factors (Figures 2 and 3). The weights calculated for these
three models are listed in Table S1. In the first model (model 1), all the landslide points
from the 2014 inventory were used and there was no spatial partitioning of the dataset
(Figure 4a). The AUC of the SRC of this model is 0.91 (Figure 5a). The areas classified
as very high and high susceptibility cover 7% and 9% of the city, respectively. These
two susceptibility classes are concentrated in the northeastern, west-central, and southern
parts of Kuala Lumpur; much of this area is not developed. About 7% of the area is classified
as moderately susceptible. The moderately susceptible areas are distributed mainly in the
vicinity of the two earlier classes. The low susceptibility areas (20%) are scattered around
the earlier classes and within the very low susceptibility class. Covering 57% of the area,
the very low susceptibility class is the largest. It is distributed mainly in the northern and
eastern Kuala Lumpur, in relatively flat areas underlain by alluvium and mine tailings.

The next two models were used for spatial cross-validation, where the study area
is partitioned into a series of two alternating linear zones (zones A and B) trending east-
west. In the initial partitioned model (model A), the susceptibility map is generated using
landslide points in zone A as the training dataset and landslide points in zone B as the
test dataset (Figure 4b). The role of landslide points in zones A and B are reversed in
the next model (model B) (Figure 4c). The distribution of the very high to moderate
susceptibility classes of these two models are similar to the unpartitioned model (model 1),
which obtained using the entire dataset of the inventory (Figure 4a–c). Compared to
model 1, the low susceptibility areas of both models A and B are higher (27%), and the very
low susceptibility areas are lower (48%).

3.3. Model Evaluation and Validation

The spatial cross-validation produced results that are similar. The AUC of the SRC for
model A and model B is 0.92 and 0.89, respectively (Figure 5a). The high AUC values of
these two models and the model 1 indicate good compatibility of the models derived from
the 7 selected landslide conditioning factors. It also indicates a high level of inclusivity
where all the parameter classes are well represented in the three models. Model 1 and model
A produced similar high SRC values, which indicates excellent model fitness. Although the
0.01 difference may not be statistically significant, a possible explanation for this finding is
the higher distribution of landslides within zone A subset (58%) generated a model with
the closest SRC value to that of model 1.
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Figure 4. (a) Landslide susceptibility map of model 1, where all the landslide points in the 2014
inventory were used to generate the model. (b) Landslide susceptibility map of model A, where
landslides in zone A were used as training dataset and landslides in zone B as test dataset. (c) Land-
slide susceptibility map of model B where landslides in zone B were used as training dataset and
landslides in zone A as test dataset. (d) Landslides occurred in 2021 that were used for retrospective
validation are plotted on model A.

The PRC for model A and model B also produced AUC values of 0.90 and 0.89, respec-
tively, indicating that both models have similarly high predictive capability (Figure 5a). The
similar AUC values show that the spatial partitioning method used is suitable for model
validation. The AUC of model A is marginally better than model B. In 2020, this model was
selected to be formally submitted to DBKL, the local council of Kuala Lumpur, to support
decision-making on land use planning and development control.
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The retrospective validation of all the three models using the 122 landslide events that
occurred in 2021 showed a slight increase in confidence level (Figure 4d). The AUC of the
PRC for model 1, model A and model B is 0.93, 0.93, and 0.92, respectively (Figure 5b). The
values proved to be marginally higher than the spatial partitioning method. Comparing
the PRC to that of model 1, the same AUC values could be attributed to the small sample
size of the 2021 landslide events and similar landslide distribution in both models. The
revalidation using the retrospective method reaffirms the high predictive ability of all three
landslide susceptibility models. This indicates that the product that was submitted to the
city council is reliable for decision-making purposes.

4. Discussion

The sole official landslide inventory established in 2014 contained only 650 landslide
points that could be verified despite the numerous slope failures have been reported in
Kuala Lumpur for decades, especially after a severe rainfall. This is primarily because
much of the evidence in the field was obliterated. In comparison, after one unusually heavy
rainfall incident, 122 events were recorded by the research team. This indicates that the
number of historical landslides is most likely higher and has gone unrecorded. Furthermore,
information in the original 2014 landslide inventory was limited to event locations, while
more complete information was obtained from the fresh landslide scars in 2021; indicating
the need for urgency in field data collection. Though the 2014 inventory was manually
improved to correctly position and interpret the type and size of landslides using DTM
and orthorectified aerial photographs; much time and expertise on local conditions was
required. An automated approach has been advocated for the identification of landslides
using high resolution DEM [7]. However, the accuracy of this method in cities is yet to be
reported. In order to obtain complete and better-quality datasets, landslide inventories in
tropical cities need to be routinely updated after heavy rainfalls.

Landslide inventories with information on landslide masses reportedly produced
more accurate susceptibility maps compared to the use of landslide mass centre point [7].
However, it has also been reported that the scarp has higher predictive accuracy than the
mass centre as it closely represents the pre-failure conditions [56]. The 2014 inventory
utilised the position of the landslide scarp centre as it was a more prominent feature that
was more readily identified. In most cases, the body and toe of the landslide is not clear due
to erosion and vegetation. In this study, the inventory sourced from JMG was not of the best
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quality with respect to data on the type and extent of the landslides. Notwithstanding, a
consistent sampling technique using information on landslide scarp resulted in sufficiently
accurate susceptibility models.

The landslide conditioning factors used for modelling were restricted to 7, although a
total of 14 factors were initially produced. This smaller selection was considered appropriate
through expert consultation and resulted in a susceptibility model that had high prediction
accuracy. In this investigation, the high resolution (1 m) Light Detection and Ranging
(LiDAR) derived DTM was resampled to 5 m, to reduce the noise, artifacts, and processing
time. This was also considered sufficient as the topographic data (DTM) was of relatively
high resolution. It has been demonstrated that finer resolution of topographic data leads to
more accurate and precise susceptibility models. This study supports recent findings that
as long as suitable input data and techniques are selected based on the data quality and
purpose, most landslide susceptibility models result in sound overall prediction accuracy
regardless of the approach [7].

Retrospective validation conducted in this study indicates that the spatial partitioning
technique along alternating linear zones trending east–west that was used to cross validate
the susceptibility models is able to resolve the issue of heterogeneity caused by north–south
trending geological and geomorphological features. All the landslide conditioning factor
classes were represented in both zones A and B (Supplementary, Table S1). The difference in
the area for 70% of the factor classes between the two zones is less than 10% (Supplementary
Table S2). It appears that spatial partitioning techniques that are context specific, taking
into account local geological and geomorphological features, result in high confidence
susceptibility maps. Nevertheless, additional analysis is required using linear zones trend-
ing in other directions to confirm this outcome. Other random partitioning and spatial
correlation techniques that have been previously reported in the country should also be
investigated [27,31,35,36].

Notwithstanding, the landslide susceptibility map that was submitted to DBKL is
reliable for decision-making as indicated by the high predictive value (AUC = 0.93) from
retrospective validation. The map indicates that that 16% of the Kuala Lumpur area
has very high to high susceptibility. Fortunately, much of this comprises rugged terrain
that is currently not developed. The population density map of district level produced
using the 2020 census data indicates the highest population per km2 is distributed at the
northwest region found in Wangsa Maju followed by the second highest class represented
by Setiawangsa, Batu and Seputeh in southwest region (Figure 6) [57]. With reference to
the landslide susceptibility model, we recognise that part of the hilly areas in Wangsa Maju,
Setiawangsa and Seputeh located in high to very high susceptibility class, requiring urgent
effort in hazard mitigation, disaster preparedness, and stringent actions for development.
In the current scenario, targeted disaster risk management strategies could be formulated
by DBKL to manage the zones that have already been developed and the vulnerable areas.
This could include investing in monitoring and early warning measures and conducting
preparedness programs which aim to build the resilience of communities. The undeveloped
areas could be either be gazetted for protection or stringent development, where developers
are required to conduct detailed geological and geotechnical investigation, with provision
of appropriate disaster mitigation measures.

Resource constraints are a contributing factor to the lack of effort to maintain and
regularly update the inventory in Kuala Lumpur. A complete and frequently updated
inventory would facilitate further investigation including the development of hazard maps
to determine the probability of landslide events. To evaluate the accuracy of bivariate
statistical model in comparison with other established methods, future work using a semi-
quantitative approach, namely the analytic hierarchy process (AHP), is recommended to
further improve the findings. In addition, the determination of rainfall threshold values
that trigger landslides could be used to establish early warning for disaster risk manage-
ment [58,59]. Further investigation is also required in Kuala Lumpur to understand the
significant increase of landslides in areas underlain by granites in 2021, whether this is
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due to unevenness in rainfall distribution or inherent characteristics of the terrain. This is
critical in light of the worsening situation expected with climate change and continuous
expansion of the city. Innovative partnerships could be considered, encompassing academia,
the government agencies, and the local council, with involvement of the insurance and
banking sectors, to maintain and conduct further investigation of landslide risks in Kuala
Lumpur. Such public–private partnerships could be scaled up to cover more cities in the
country, if successful.
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5. Conclusions

The projected intensification of monsoon rainfall over Southeast Asia and continuous
growth of the city is expected to increase landslide incidents in Kuala Lumpur, Malaysia.
This calls for reliable demarcation of areas within the city that are susceptible to landslides to
support disaster risk management. Kuala Lumpur is underlain by heterogeneous lithology
and north–south trending geological structures and geomorphological features, which
limits the effectiveness of conventional spatial partitioning techniques for validation in
landslide susceptibility modelling. This limitation was overcome by employing a new
spatial partitioning technique using a series of two alternating east–west linear zones, where
the first zone served as the training dataset and the second zone was the test dataset, and
vice versa. The portioning resulted in an inclusive distribution of landslide conditioning
factor classes; the difference in the area of factor classes between the two zones is mainly
less than 10%. The ROC curves show that the susceptibility models have good compatibility
with the selected landslide conditioning factors and have high predictive accuracy. Model
A with the highest AUC values (SRC = 0.92, PRC = 0.90) was submitted to DBKL for
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land use planning and development control. Retrospective revalidation reaffirmed the
high predictive ability (AUC of PRC = 0.93) of the landslide susceptibility model. The
findings indicates that the product is reliable for decision-making purposes, supporting
local level hazard and risk mitigation efforts and better ground prediction in future city
development The authors suggest future work to be done using other established methods
where comparison of the findings can be done, as data acquisition of landslide occurrences
and precipitation data within the study area improves.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13020768/s1, Table S1: (a) The weights of the 14 landslide condi-
tioning factors. Only the first seven factors were used in model 1. (b) The weights for model A where
all the 377 landslide points in zone A were used as the training dataset. (c) The weights for model B
where all the 274 landslide points in zone B were used as the training dataset. Table S2: Comparison
of the area extent of the landslide conditioning factor classes in zone A and zone B.
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